廣東省中學山市四中學2024年中考適應性考試數學試題含解析_第1頁
廣東省中學山市四中學2024年中考適應性考試數學試題含解析_第2頁
廣東省中學山市四中學2024年中考適應性考試數學試題含解析_第3頁
廣東省中學山市四中學2024年中考適應性考試數學試題含解析_第4頁
廣東省中學山市四中學2024年中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省中學山市四中學2024年中考適應性考試數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是將正方體切去一個角后形成的幾何體,則該幾何體的左視圖為()A. B. C. D.2.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.123.如圖是一個小正方體的展開圖,把展開圖折疊成小正方體后,有“我”字的一面相對面上的字是()A.國 B.厲 C.害 D.了4.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.5.如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°6.給出下列各數式,①②③④計算結果為負數的有()A.1個 B.2個 C.3個 D.4個7.制作一塊3m×2m長方形廣告牌的成本是120元,在每平方米制作成本相同的情況下,若將此廣告牌的四邊都擴大為原來的3倍,那么擴大后長方形廣告牌的成本是()A.360元 B.720元 C.1080元 D.2160元8.下列各式中,互為相反數的是()A.和 B.和 C.和 D.和9.如圖所示,若將△ABO繞點O順時針旋轉180°后得到△A1B1O,則A點的對應點A1點的坐標是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)10.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統計圖和條形統計圖,根據圖中提供的信息,這些職工成績的中位數和平均數分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是________.12.寫出一個經過點(1,2)的函數表達式_____.13.如圖,直線y=2x+4與x,y軸分別交于A,B兩點,以OB為邊在y軸右側作等邊三角形OBC,將點C向左平移,使其對應點C′恰好落在直線AB上,則點C′的坐標為.14.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.15.如圖,把△ABC繞點C順時針旋轉得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數是_____°.16.計算:2tan三、解答題(共8題,共72分)17.(8分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績為(分),且,將其按分數段分為五組,繪制出以下不完整表格:組別

成績(分)

頻數(人數)

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據表格提供的信息,解答以下問題:(1)本次決賽共有名學生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應的頻數分布直方圖;(4)若決賽成績不低于80分為優秀,則本次大賽的優秀率為.18.(8分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.19.(8分)如圖,已知拋物線y=ax2+bx+1經過A(﹣1,0),B(1,1)兩點.(1)求該拋物線的解析式;(2)閱讀理解:在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數,且k1≠0),直線l2:y=k2x+b2(k2,b2為常數,且k2≠0),若l1⊥l2,則k1?k2=﹣1.解決問題:①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.20.(8分)如圖,在平面直角坐標系中,正方形的邊長為,頂點、分別在軸、軸的正半軸,拋物線經過、兩點,點為拋物線的頂點,連接、、.求此拋物線的解析式.求此拋物線頂點的坐標和四邊形的面積.21.(8分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.22.(10分)(1)計算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化簡:.23.(12分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.24.益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數不變,原來每運一次的運費是1200元,現在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現在的運費3020(1)求每次運輸的農產品中A,B產品各有多少件;(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數增加8件,但總件數中B產品的件數不得超過A產品件數的2倍,問產品件數增加后,每次運費最少需要多少元.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】看到的棱用實線體現.故選C.2、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質.3、A【解析】

正方體的表面展開圖,相對的面之間一定相隔一個正方形,根據這一特點作答.【詳解】∴有“我”字一面的相對面上的字是國.故答案選A.【點睛】本題考查的知識點是專題:正方體相對兩個面上的文字,解題的關鍵是熟練的掌握正方體相對兩個面上的文字.4、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.5、B【解析】

由正方形的性質和等邊三角形的性質得出∠BAE=150°,AB=AE,由等腰三角形的性質和內角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質即可得出結果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質、等邊三角形的性質、等腰三角形的判定與性質、三角形的外角性質;熟練掌握正方形和等邊三角形的性質,并能進行推理計算是解決問題的關鍵.6、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數的有2個.故選B.7、C【解析】

根據題意求出長方形廣告牌每平方米的成本,根據相似多邊形的性質求出擴大后長方形廣告牌的面積,計算即可.【詳解】3m×2m=6m2,∴長方形廣告牌的成本是120÷6=20元/m2,將此廣告牌的四邊都擴大為原來的3倍,則面積擴大為原來的9倍,∴擴大后長方形廣告牌的面積=9×6=54m2,∴擴大后長方形廣告牌的成本是54×20=1080元,故選C.【點睛】本題考查的是相似多邊形的性質,掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.8、A【解析】

根據乘方的法則進行計算,然后根據只有符號不同的兩個數互為相反數,可得答案.【詳解】解:A.=9,=-9,故和互為相反數,故正確;B.=9,=9,故和不是互為相反數,故錯誤;C.=-8,=-8,故和不是互為相反數,故錯誤;D.=8,=8故和不是互為相反數,故錯誤.故選A.【點睛】本題考查了有理數的乘方和相反數的定義,關鍵是掌握有理數乘方的運算法則.9、A【解析】

由題意可知,點A與點A1關于原點成中心對稱,根據圖象確定點A的坐標,即可求得點A1的坐標.【詳解】由題意可知,點A與點A1關于原點成中心對稱,∵點A的坐標是(﹣3,2),∴點A關于點O的對稱點A'點的坐標是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質及關于原點對稱點的坐標的特征,熟知中心對稱的性質及關于原點對稱點的坐標的特征是解決問題的關鍵.10、D【解析】

解:總人數為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數據都是96分,這些職工成績的中位數是(96+96)÷2=96;這些職工成績的平均數是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數;2.扇形統計圖;3.條形統計圖;1.算術平均數,掌握概念正確計算是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題解析:如圖,連接OM交AB于點C,連接OA、OB,由題意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=,AC=∴∠AOC=60°,AB=2AC=2,∴∠AOB=2∠AOC=120°,則S弓形ABM=S扇形OAB-S△AOB==,S陰影=S半圓-2S弓形ABM=π×22-2()=2.故答案為2.12、y=x+1(答案不唯一)【解析】

本題屬于結論開放型題型,可以將函數的表達式設計為一次函數、反比例函數、二次函數的表達式.答案不唯一.【詳解】解:所求函數表達式只要圖象經過點(1,2)即可,如y=2x,y=x+1,…答案不唯一.

故答案可以是:y=x+1(答案不唯一).【點睛】本題考查函數,解題的關鍵是清楚幾種函數的一般式.13、(﹣2,2)【解析】試題分析:∵直線y=2x+4與y軸交于B點,∴x=0時,得y=4,∴B(0,4).∵以OB為邊在y軸右側作等邊三角形OBC,∴C在線段OB的垂直平分線上,∴C點縱坐標為2.將y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐標為(﹣2,2).考點:2.一次函數圖象上點的坐標特征;2.等邊三角形的性質;3.坐標與圖形變化-平移.14、【解析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.15、1【解析】

由旋轉的性質可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為:1.【點睛】本題考查了旋轉的性質,熟練運用旋轉的性質是本題的關鍵.16、3+3【解析】

本題涉及零指數冪、負指數冪、絕對值、特殊角的三角函數值4個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【點睛】本題主要考查了實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指數冪、零指數冪、特殊角的三角函數、絕對值等考點的運算三、解答題(共8題,共72分)17、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據第一組別的人數和百分比得出樣本容量;(2)根據樣本容量以及頻數、頻率之間的關系得出a和b的值,(3)根據a的值將圖形補全;(4)根據圖示可得:優秀的人為第四和第五組的人,將兩組的頻數相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數分布直方圖18、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】

(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據AE=B′E,可得∠EAB′=∠EB′A,再根據∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質,等邊三角形的性質,正方形的判定與性質以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據折疊和軸對稱的性質用含x的代數式表示其他線段的長度,選擇適當的直角三角形,運用勾股定理列出方程求出答案.19、(1)y=﹣x2+x+1;(2)①-;②點P的坐標(6,﹣14)(4,﹣5);(3).【解析】

(1)根據待定系數法,可得函數解析式;

(2)根據垂線間的關系,可得PA,PB的解析式,根據解方程組,可得P點坐標;

(3)根據垂直于x的直線上兩點間的距離是較大的縱坐標減較小的縱坐標,可得MQ,根據三角形的面積,可得二次函數,根據二次函數的性質,可得面積的最大值,根據三角形的底一定時面積與高成正比,可得三角形高的最大值【詳解】解:(1)將A,B點坐標代入,得,解得,拋物線的解析式為y=;(2)①由直線y=2x﹣1與直線y=mx+2互相垂直,得2m=﹣1,即m=﹣;故答案為﹣;②AB的解析式為當PA⊥AB時,PA的解析式為y=﹣2x﹣2,聯立PA與拋物線,得,解得(舍),,即P(6,﹣14);當PB⊥AB時,PB的解析式為y=﹣2x+3,聯立PB與拋物線,得,解得(舍),即P(4,﹣5),綜上所述:△PAB是以AB為直角邊的直角三角形,點P的坐標(6,﹣14)(4,﹣5);(3)如圖:,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|xB﹣xA|=(﹣t2+)×2=﹣t2+,當t=0時,S取最大值,即M(0,1).由勾股定理,得AB==,設M到AB的距離為h,由三角形的面積,得h==.點M到直線AB的距離的最大值是.【點睛】本題考查了二次函數綜合題,涉及到拋物線的解析式求法,兩直線垂直,解一元二次方程組,及點到直線的最大距離,需要注意的是必要的輔助線法是解題的關鍵20、;.【解析】

(1)由正方形的性質可求得B、C的坐標,代入拋物線解析式可求得b、c的值,則可求得拋物線的解析式;

(2)把拋物線解析式化為頂點式可求得D點坐標,再由S四邊形ABDC=S△ABC+S△BCD可求得四邊形ABDC的面積.【詳解】由已知得:,,把與坐標代入得:,解得:,,則解析式為;∵,∴拋物線頂點坐標為,則.【點睛】二次函數的綜合應用.解題的關鍵是:在(1)中確定出B、C的坐標是解題的關鍵,在(2)中把四邊形轉化成兩個三角形.21、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.22、(1)2;(2)x﹣y.【解析】分析:(1)本題涉及了二次根式的化簡、絕對值、負指數冪及特殊三角函數值,在計算時,需要針對每個知識點分別進行計算,然后根據實數的運算法則求得計算結果.(2)原式括號中兩項利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結果.詳解:(1)原式=3﹣4﹣2×+4=2;(2)原式=?=x﹣y.點睛:(1)本題考查實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟練掌握負整數指

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論