廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷含解析_第1頁
廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷含解析_第2頁
廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷含解析_第3頁
廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷含解析_第4頁
廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省肇慶市端州區(qū)五校2024屆中考數學猜題卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.2.下列事件中,屬于必然事件的是()A.三角形的外心到三邊的距離相等B.某射擊運動員射擊一次,命中靶心C.任意畫一個三角形,其內角和是180°D.拋一枚硬幣,落地后正面朝上3.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.4.不等式4-2x>0的解集在數軸上表示為()A. B. C. D.5.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.6.如圖是由幾個大小相同的小正方體搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小正方體的個數,則該幾何體的左視圖是()A. B.C. D.7.如右圖,⊿ABC內接于⊙O,若∠OAB=28°則∠C的大小為()A.62° B.56° C.60° D.28°8.中國在第二十三屆冬奧會閉幕式上奉獻了《2022相約北京》的文藝表演,會后表演視頻在網絡上推出,即刻轉發(fā)量就超過810000這個數用科學記數法表示為()A.8.1×106 B.8.1×105 C.81×105 D.81×1049.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF10.已知一元二次方程1–(x–3)(x+2)=0,有兩個實數根x1和x2(x1<x2),則下列判斷正確的是()A.–2<x1<x2<3 B.x1<–2<3<x2 C.–2<x1<3<x2 D.x1<–2<x2<3二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式=________,=__________.12.已知,且,則的值為__________.13.將2.05×10﹣3用小數表示為__.14.一機器人以0.2m/s的速度在平地上按下圖中的步驟行走,那么該機器人從開始到停止所需時間為__s.15.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.16.若式子在實數范圍內有意義,則x的取值范圍是_______.三、解答題(共8題,共72分)17.(8分)已知:△ABC在直角坐標平面內,三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.18.(8分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.19.(8分)如圖,一根電線桿PQ直立在山坡上,從地面的點A看,測得桿頂端點P的仰角為45°,向前走6m到達點B,又測得桿頂端點P和桿底端點Q的仰角分別為60°和30°,求電線桿PQ的高度.(結果保留根號).20.(8分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.21.(8分)已知關于x的一元二次方程有實數根.(1)求k的取值范圍;(2)若k為正整數,且方程有兩個非零的整數根,求k的取值.22.(10分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結果保留根號形式)23.(12分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經測量得到如下數據:,,,,請你利用所學知識探索它的最大面積(結果保留根號)24.有一個二次函數滿足以下條件:①函數圖象與x軸的交點坐標分別為A(1,0),B(x1,y1)(點B在點A的右側);②對稱軸是x=3;③該函數有最小值是﹣1.(1)請根據以上信息求出二次函數表達式;(1)將該函數圖象x>x1的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結合畫出的函數圖象求x3+x4+x5的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.2、C【解析】分析:必然事件就是一定發(fā)生的事件,依據定義即可作出判斷.詳解:A、三角形的外心到三角形的三個頂點的距離相等,三角形的內心到三邊的距離相等,是不可能事件,故本選項不符合題意;B、某射擊運動員射擊一次,命中靶心是隨機事件,故本選項不符合題意;C、三角形的內角和是180°,是必然事件,故本選項符合題意;D、拋一枚硬幣,落地后正面朝上,是隨機事件,故本選項不符合題意;故選C.點睛:解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.4、D【解析】

根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-4,

系數化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.5、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.6、D【解析】根據俯視圖中每列正方形的個數,再畫出從正面的,左面看得到的圖形:幾何體的左視圖是:

.故選D.7、A【解析】

連接OB.在△OAB中,OA=OB(⊙O的半徑),∴∠OAB=∠OBA(等邊對等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=∠AOB(同弧所對的圓周角是所對的圓心角的一半),∴∠C=62°;故選A8、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】810000=8.1×1.

故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、C【解析】

根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.10、B【解析】

設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根據二次函數的圖像性質可知y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1個單位長度,根據圖像的開口方向即可得出答案.【詳解】設y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0時,x=-2或x=3,∴y=-(x﹣3)(x+2)的圖像與x軸的交點為(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的圖像可看做y=-(x﹣3)(x+2)的圖像向上平移1,與x軸的交點的橫坐標為x1、x2,∵-1<0,∴兩個拋物線的開口向下,∴x1<﹣2<3<x2,故選B.【點睛】本題考查二次函數圖像性質及平移的特點,根據開口方向確定函數的增減性是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】此題考查因式分解答案點評:利用提公因式、平方差公式、完全平方公式分解因式12、1【解析】分析:直接利用已知比例式假設出a,b,c的值,進而利用a+b-2c=6,得出答案.詳解:∵,∴設a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案為1.點睛:此題主要考查了比例的性質,正確表示出各數是解題關鍵.13、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點睛】本題考查了科學記數法-原數,用科學記數法表示的數還原成原數時,n>0時,n是幾,小數點就向右移幾位;n<0時,n是幾,小數點就向左移幾位.14、240【解析】根據圖示,得出機器人的行走路線是沿著一個正八邊形的邊長行走一周,是解決本題的關鍵,考察了計算多邊形的周長,本題中由于機器人最后必須回到起點,可知此機器人一共轉了360°,我們可以計算機器人所轉的回數,即360°÷45°=8,則機器人的行走路線是沿著一個正八邊形的邊長行走一周,故機器人一共行走6×8=48m,根據時間=路程÷速度,即可得出結果.本題解析:依據題中的圖形,可知機器人一共轉了360°,∵360°÷45°=8,∴機器人一共行走6×8=48m.∴該機器人從開始到停止所需時間為48÷0.2=240s.15、①②③【解析】

根據翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.16、x≠﹣1【解析】

分式有意義的條件是分母不等于零.【詳解】∵式子在實數范圍內有意義,∴x+1≠0,解得:x≠-1.

故答案是:x≠-1.【點睛】考查的是分式有意義的條件,掌握分式有意義的條件是解題的關鍵.三、解答題(共8題,共72分)17、(1)畫圖見解析,(2,-2);(2)畫圖見解析,(1,0);【解析】

(1)將△ABC向下平移4個單位長度得到的△A1B1C1,如圖所示,找出所求點坐標即可;(2)以點B為位似中心,在網格內畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,如圖所示,找出所求點坐標即可.【詳解】(1)如圖所示,畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是(2,-2);(2)如圖所示,以B為位似中心,畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是(1,0),故答案為(1)(2,-2);(2)(1,0)【點睛】此題考查了作圖-位似變換與平移變換,熟練掌握位似變換與平移變換的性質是解本題的關鍵.18、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.19、(6+)米【解析】

根據已知的邊和角,設CQ=x,BC=QC=x,PC=BC=3x,根據PQ=BQ列出方程求解即可.【詳解】解:延長PQ交地面與點C,由題意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,設CQ=x,則在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,則PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,則電線桿PQ高為(6+)米.【點睛】此題重點考察學生對解直角三角形的理解,掌握解直角三角形的方法是解題的關鍵.20、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】

(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.21、(1);(2)k=1【解析】

(1)根據一元二次方程2x2+4x+k﹣1=0有實數根,可得出△≥0,解不等式即可得出結論;(2)分別把k的正整數值代入方程2x2+4x+k﹣1=0,根據解方程的結果進行分析解答.【詳解】(1)由題意得:△=16﹣8(k﹣1)≥0,∴k≤1.(2)∵k為正整數,∴k=1,2,1.當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x=0,解得:x=0或x=-2,有一個根為零;當k=2時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+1=0,解得:x=,無整數根;當k=1時,方程2x2+4x+k﹣1=0變?yōu)椋?x2+4x+2=0,解得:x1=x2=-1,有兩個非零的整數根.綜上所述:k=1.【點睛】本題考查了一元二次方程根的判別式:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(1)△<0?方程沒有實數根.22、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數求出OC=100,根據山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數的實際應用,中等難度,作出輔助線構造直角三角形并熟練應用三角函數是解題關鍵.23、(1)①;②;(2)150+475+475.【解析】

(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得

△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論