貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題_第1頁
貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題_第2頁
貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題_第3頁
貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題_第4頁
貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省銅仁市思南中學2025年高三畢業生第一次教學質量監測數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長度的集合,則()A.B.C.D.2.已知向量,(其中為實數),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知復數z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限4.給出個數,,,,,,其規律是:第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,以此類推,要計算這個數的和.現已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;5.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要7.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則8.已知函數為奇函數,則()A. B.1 C.2 D.39.若向量,,則與共線的向量可以是()A. B. C. D.10.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb11.《九章算術》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦的植物,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.12.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,,,兩兩垂直且,點為的外接球上任意一點,則的最大值為______.14.若函數(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.15.已知函數在上僅有2個零點,設,則在區間上的取值范圍為_______.16.展開式中的系數為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,直線和直線的極坐標方程分別是()和(),其中().(1)寫出曲線的直角坐標方程;(2)設直線和直線分別與曲線交于除極點的另外點,,求的面積最小值.18.(12分)如圖,四棱錐,側面是邊長為2的正三角形,且與底面垂直,底面是的菱形,為棱上的動點,且.(I)求證:為直角三角形;(II)試確定的值,使得二面角的平面角余弦值為.19.(12分)已知曲線:和:(為參數).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.20.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.21.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).22.(10分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

如圖所示:在邊長為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點睛】本題考查了三視圖,元素和集合的關系,意在考查學生的空間想象能力和計算能力.2、A【解析】

結合向量垂直的坐標表示,將兩個條件相互推導,根據能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.3、C【解析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案.詳解:由題意,復數z=2i1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力.4、A【解析】

要計算這個數的和,這就需要循環50次,這樣可以確定判斷語句①,根據累加最的變化規律可以確定語句②.【詳解】因為計算這個數的和,循環變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數是,第個數比第個數大,第個數比第個數大,第個數比第個數大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環結構,正確讀懂題意是解本題的關鍵.5、A【解析】

根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.6、B【解析】

根據充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.7、B【解析】

根據空間中線線、線面位置關系,逐項判斷即可得出結果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B【點睛】本題主要考查與線面、線線相關的命題,熟記線線、線面位置關系,即可求解,屬于常考題型.8、B【解析】

根據整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數.而為奇函數,為偶函數,所以為偶函數,故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據函數的奇偶性求參數值,屬于基礎題.9、B【解析】

先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.10、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內是增函數即可得到,所以C錯誤;對于選項D,利用在上為減函數易得,所以D錯誤.所以本題選B.【考點】指數函數與對數函數的性質【名師點睛】比較冪或對數值的大小,若冪的底數相同或對數的底數相同,通常利用指數函數或對數函數的單調性進行比較;若底數不同,可考慮利用中間量進行比較.11、C【解析】

由題意知:,,設,則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設,則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎題.12、A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先根據三棱錐的幾何性質,求出外接球的半徑,結合向量的運算,將問題轉化為求球體表面一點到外心距離最大的問題,即可求得結果.【詳解】因為兩兩垂直且,故三棱錐的外接球就是對應棱長為2的正方體的外接球.且外接球的球心為正方體的體對角線的中點,如下圖所示:容易知外接球半徑為.設線段的中點為,故可得,故當取得最大值時,取得最大值.而當在同一個大圓上,且,點與線段在球心的異側時,取得最大值,如圖所示:此時,故答案為:.【點睛】本題考查球體的幾何性質,幾何體的外接球問題,涉及向量的線性運算以及數量積運算,屬綜合性困難題.14、(1,)【解析】

在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態可求a的取值范圍.【詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【點睛】本題主要考查導數的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數學抽象的核心素養.15、【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.16、【解析】

變換,根據二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)16.【解析】

(1)將極坐標方程化為直角坐標方程即可;(2)利用極徑的幾何意義,聯立曲線,直線,直線的極坐標方程,得出,利用三角形面積公式,結合正弦函數的性質,得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標方程為:;(2),即同理∴當且僅當,即()時取等號即的面積最小值為16【點睛】本題主要考查了極坐標方程化直角坐標方程以及極坐標的應用,屬于中檔題.18、(1)見解析;(II).【解析】

試題分析:(1)取中點,連結,以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能證明為直角三角形;(2)設,由,得,求出平面的法向量和平面的法向量,,根據空間向量夾角余弦公式能求出結果.試題解析:(I)取中點,連結,依題意可知均為正三角形,所以,又平面平面,所以平面,又平面,所以,因為,所以,即,從而為直角三角形.(II)法一:由(I)可知,又平面平面,平面平面,平面,所以平面.以為原點,建立空間直角坐標系如圖所示,則,由可得點的坐標所以,設平面的法向量為,則,即解得,令,得,顯然平面的一個法向量為,依題意,解得或(舍去),所以,當時,二面角的余弦值為.法二:由(I)可知平面,所以,所以為二面角的平面角,即,在中,,所以,由正弦定理可得,即解得,又,所以,所以,當時,二面角的余弦值為.19、(1),;(2)1.【解析】

(1)利用正弦的和角公式,結合極坐標化為直角坐標的公式,即可求得曲線的直角坐標方程;先寫出曲線的普通方程,再利用公式化簡為極坐標即可;(2)先求出的直角坐標,據此求得中點的直角坐標,將其轉化為極坐標,聯立曲線的極坐標方程,即可求得兩點的極坐標,則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標方程為:,:的普通方程為,利用公式可得其極坐標方程為(2)由(1)可得的直角坐標方程為,故容易得,,∴,∴的極坐標方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標方程和直角坐標方程之間的轉化,涉及參數方程轉化為普通方程,以及在極坐標系中求兩點之間的距離,屬綜合基礎題.20、(1)見解析;(2)【解析】

(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數據可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設到平面的距離為,由,即,即,可得,設直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學生的轉化思想和計算能力,屬于中檔題.21、(1)證明見解析;(2)2【解析】

(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論