




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter8
FrequencyResponseMethodCurriculumSystemSystemmodelingPerformanceissuesanalysiscorrectionTimedomainComplexdomainFrequencydomain8.1IntroductionLinearconstantcoefficientsystemsInputsignal:sinusoidal(frequency,magnitude,andphase)Keyconcepts:(8.1)FrequencyresponseFrequencycharacteristicRepresentationoffrequencycharacteristic(howtogetthem?)Polarplot(8.2)Bodeplot(8.2,8.3)Logmagnitudeandphasediagram(8.6)ApplicationsDeterminethesteady-stateresponsetoasinusoidalinput(8.1)Determinethetransferfunctionbyexperiment(8.4)Analyzeperformancespecificationinthefrequencydomain(8.5)Stabilityanalysis(chapter9)andDesign(chapter10)
Featuresoffrequencydomainanalysismethod⑴Thismethodstudieshowthemagnitudeandphaseofsinusoidalsteady-statevarywiththefrequency⑵Studiesthe
stabilityandperformanceoftheclosed-loopsystembytheopen-loopfrequencycharacteristics⑶Agraphicanalysismethod
⑷Anapproximatemethod8.1Introduction48.1IntroductionThefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.
Theresultingoutputsignalforalinearsystem,aswellassignalsthroughoutthesystem,issinusoidalwiththesamefrequencyasinputsinusoidalinthesteadystate;
Itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle,andtheamountofdifferenceisafunctionoftheinputfrequency.Thesteady-stateoutputsignaldependsonlyonthemagnitudeandphaseofT(jω)ataspecificfrequency
ωs.
Y(s)=T(s)R(s)withr(t)=Asinωt.whereareassumedtobedistinctpoles.Theninpartialfractionformwehavewhereaandβ
areconstantswhichareproblemdependent.TakingtheinverseLaplacetransformyieldsDemonstrationexampleStaticoutputofthesystem
Parametersband
canbeobtainedby7
T(jω)canberepresentedby
8Oneadvantageofthefrequencyresponsemethodisthatexperimentaldeterminationofthefrequencyresponseofasystemiseasilyaccomplishedandisthemostreliableanduncomplicatedmethodfortheexperimentalanalysisofasystem.Furthermore,thedesignofasysteminthefrequencydomainprovidesthedesignerwithcontrolofthebandwidthofasystem,aswellassomemeasureoftheresponseofthesystemtoundesirednoiseanddisturbances.Asecondadvantageisthatthetransferfunctiondescribingthesinusoidalsteady-statebehaviorofasystemcanbeobtainedbyreplacingswithjωinthesystemtransferfunctionT(s)(calledasfrequencycharacteristic).Thebasicdisadvantageofthefrequencyresponsemethodforanalysisanddesignistheindirectlinkbetweenthefrequencyandthetimedomain.
ConceptofFrequency-ResponseCharacteristics
ConsidertheRCcircuitshowninthefigure(ur(t)=Asinwt).Obtainuc(t).Modeling10
DefinitionofFrequency-ResponseCharacteristicDefinition1Definition3Definition2Magnitude-FrequencyCharacteristic
Phase-Frequency
Characteristic
ConceptofFrequency-ResponseCharacteristics
11
Considerthesystemshowninthefigure(r(t)=3sin(2t+30o)).Obtaincs(t),es(t).Solution.ConceptofFrequency-ResponseCharacteristics
12
Frequency-ResponseCharacteristicsinGraphicalFormsⅠ.Frequencycharacteristic
Ⅱ.Magnitudeandphasecharacteristic
(Nyquist)Ⅲ.Log-magnitude-frequencycharacteristic
(Bode)Ⅳ.Log-phase-frequencycharacteristic
(Nichols)Magnitude-FrequencyPhase-FrequencyLog-magnitude-frequencyLog-phase-frequencyForConceptofFrequency-ResponseCharacteristics
13
CorrelationbetweenMathematicalmodelsConceptofFrequency-ResponseCharacteristics
14
Themagnitude-phasecurveforFirst-OrderfactorsMagnitude-PhaseFrequencyCharacteristics15
Magnitude-phasecharacteristicsoftypicalfactorsProve:Theamplitude-phasecharacteristicsoffirst-orderfactorsareasemicircle.
(Lowerhalfofthecircle)Magnitude-PhaseFrequencyCharacteristics16
Magnitude-phasecharacteristicsFromtheshapeofthecurve,weknowthatFromthestartingpoint:Fromj0From
j1:Obtainthetransferfunctionfromthemagnitude-phasecharacteristicsshowninthefigure.Magnitude-PhaseFrequencyCharacteristics17
UnstableFirst-OrderFactors⑸ReciprocalFirst-OrderFactorsMagnitude-PhaseFrequencyCharacteristics18Example8.2PolarplotoftransferfunctionThefrequencycharacteristicisThemagnitudeandphaseangleare8.2FrequencyResponsePlotsUsetherealandimaginarypartsofG(jω)as8.2FrequencyResponsePlots
§Magnitude-PhaseFrequencyCharacteristics(Nyquist)§Magnitude-PhaseFrequencyCharacteristicsofTypicalFactors⑴Thegain⑵Derivativefactor⑶Integralfactor⑷First-orderfactor21AmplitudeandPhaseFrequency⑹OscillationlinkAmplitudeandPhaseFrequencyCharacteristicsofTypicalLink22AmplitudeandPhaseFrequencyCharacteristicsResonance
frequency
wrandresonantpeaking
Mr
Example4:When23AmplitudeandPhaseFrequencyCharacteristicsResonancefrequencyResonantpeakingwr,Mr
不存在24AmplitudeandPhaseFrequencyCharacteristics
AmplitudeandphasecharacteristicsTheamplitudeandphasecharacteristicsisshowninfigure.Determinethetransferfunction.Fromtheshapeofcurve,wehaveFromstartingpoint:Fromj(w0):From|G(w0)|:25AmplitudeandPhaseFrequencyCharacteristics
UnstableOscillationlink26
⑺ReciprocalQuadraticFactor
Magnitude-PhaseFrequencyCharacteristics27
⑻DelayFactorMagnitude-PhaseFrequencyCharacteristics28
NyquistPlotsofTypicalFactors⑴⑵⑶⑻⑸⑷⑹⑺Magnitude-PhaseFrequencyCharacteristics29
NyquistPlotofOpen-LoopTransferFunctionsNyquistPlotofOpen-loopTransferFunctionsStartingpoint
Endingpoint
30
NyquistPlotofOpen-LoopTransferFunctions31
A:
B:NyquistPlotofOpen-LoopTransferFunctions
32
SketchtheNyquistplotforSolution.Asymptotes:Intersectionpointwithrealaxis:
NyquistPlotofOpen-LoopTransferFunctions
33Example8.4Bodediagramofatwin-TnetworkThedeterminationofthefrequencyresponseusingthepole-zerodiagramandvectorstojωThetransferfunctionofthenetworkis8.2FrequencyResponsePlots34Ifthezerosareat±j1,andthepolesareatAtω=0Atω=1/τ
When8.2FrequencyResponsePlots358.2FrequencyResponsePlotsThelimitationsofpolarplotsTheadditionofpolesorzerostoanexistingsystemrequirestherecalculationofthefrequencyresponseFurthermore,calculatingthefrequencyresponseinthismanneristediousanddoesnotindicatetheeffectoftheindividualpolesorzeros.BodeDiagramsSemilogCoordinate37
BodeDiagrams
⑴Magitudemultiplication=Logarithmaddition
Convenientforsegmentaddition;LongitudinalaxisAbscissaAxisFeaturesofthecoordinateFeaturesScaledby
lgw,dec“Decade”按lgw
刻度,dec“十倍頻程”Markedbyw.Distancereflectingratio按w標定,等距等比“Decibel”
⑵Representsfrequencycharacteristicinlargescale;⑶L(w)canbedeterminedbyexperiment,socanG(s).AnintroductionforBodediagrams(LogarithmicPlots)38Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactors,suchas(jωτ+1),intoadditivefactors,20log(jωτ+1)byvirtueofthedefinitionoflogarithmicgain.ThegeneraltransferfunctionisGeneralcase39ThelogarithmicmagnitudeofG(jω)isThephaseangleplotis401.ConstantgainKb2.Poles(orzeros)attheorigin(jω)3.Poles(orzeros)attherealaxis(jωτ+1)4.Complexconjugatepoles(orzeros)Notes:WecandeterminethelogarithmicmagnitudeplotandphaseangleforthesefourfactorsandthenutilizethemtoobtainaBodediagramforanygeneralformofatransferfunctionTypicalfactors418.2FrequencyResponsePlotsThecurvesforeachfactorareobtainedandthenaddedtogethergraphicallytoobtainthecurvesforthecompletetransferfunction.Furthermorethisprocedurecanbesimplifiedbyusingtheasymptoticapproximationstothesecurvesandobtainingtheactualcurvesonlyatspecificimportantfrequencies.42ConstantGainKbThelogarithmicgainfortheconstantKbis8.2TheBodediagramoftypicalfactorsThegaincurveisahorizontallineontheBodediagram.Ifthegainisanegativevalue,-Kb,thelogarithmicgainremains20logKb.Thenegativesignisaccountedforbythephaseangle,-180°.Poles(orzeros)attheorigin(jω)LogarithmicmagnitudePhaseangledB8.2TheBodediagramoftypicalfactorsPolesorZerosontheRealAxisLogarithmicmagnitudeTheasymptoticcurveforω<<1/τis20log1=0dB,andtheasymptoticcurveforω>>1/τis–20logωτ,whichhasaslopeof–20dB/decade.Theintersectionofthetwoasymptotesoccurswhenω=1/τ,thebreakfrequency.Theactuallogarithmicgainis–3dBwhenω=1/τThephaseangleis8.2TheBodediagramoftypicalfactorsThephaseanglecurve8.2TheBodediagramoftypicalfactors46
TheLogarithmicplotoffirst-orderfactorsissymmetricaboutthe
(w=1/T,j=-45
)point.Prove:Suppose47ComplexConjugatePolesorZerosThelogarithmicmagnitudeforapairofcomplexconjugatepolesisThephaseangleisWhenu<<1,themagnitudeis
andphaseangleis00
Whenu>>1,themagnitudeis
andphaseangleis-1800
8.2TheBodediagramoftypicalfactors8.2FrequencyResponsePlots8.2FrequencyResponsePlotsThemaximumvalueofthefrequencyresponse,MPω,occursattheresonantfrequencyωr
Theresonantfrequencyisandthemaximumvalueofthemagnitude|G(ω)|is8.2FrequencyResponsePlots
BodeDiagramsReview
TheBodediagramoftypicalfactors⑴TheGain⑵DerivertiveFactor⑶IntegralFactor⑷First-OrderFactor52
⑸ReciprocalFirst-OderFactorBodeDiagramsReview53
⑹QuadraticFactorsBodeDiagramsReview54
BodeDiagramsReview⑺ReceprocalQuadraticFactors55
⑻DelayLinkBodeDiagramsReview568.3AnexampleofdrawingtheBodediagramTheBodediagramofatransferfunctionG(s)ThefactorshaveAconstantgainK=5ApoleattheoriginApoleatω=2Azeroatω=10Apairofcomplexpolesatω=ωn=5057588.3AnexampleofdrawingtheBodediagram5960618.3AnexampleofdrawingtheBodediagram62Insummary,onemayobtainapproximatecurvesforthemagnitudeandphaseshiftofatransferfunctionG(jω)inordertodeterminetheimportantfrequencyranges.Withintherelativelysmallimportantfrequencyranges,theexactmagnitudeandphaseshiftcanbereadilyevaluatebyusingtheexactequations.TheexactG(jω)canbeplottedbyMatlab
63BodeDiagramForOpen-loopSystemsThestepstosketchBodediagramforopen-loopsystem⑴Changingopen-loop
transferfunction
G(jw)
intotheendofastandardform⑵Listingtheturningfrequencyinturn.⑶確定基準線0.2Inertiallink0.5First-ordercompositedifferential
1OscillationLink基準點斜率⑷DrawingthediagramFirst-orderInertiallink-20dB/decCompositedifferential+20dB/decSecond-orderOscillationLink-40dB/decCompositedifferential-40dB/decw=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-40第一轉折頻率之左的特性及其延長線64BodeDiagramForOpen-loopSystems⑸Correction⑹Check①Whentheturningfrequencyoftwoinertiallinksareclosetoeachother②Whenoscillation
x(0.38,0.8)
①TherightmostslopeofL(w)isequalto
-20(n-m)dB/dec
②Thenumberofturningpoint=(Inertial)+(First-ordercompositedifferential)+(Oscillation)+(Second-ordercompositedifferential)③j(w)
-90°(n-m)基準點斜率w=0.2
Inertiallink-20w=0.5
First-ordercompositedifferential+20w=1
OscillationLink-4065
BodeDiagramForOpen-loopSystemsBasepoint
.SketchBodediagramSolution.①Standardform②Turningfrequencies③Baseline④Plotting
Slope
⑤
CheckTherightmostslopeofL(w)is-20(n-m)=0Thenumberofturningpoints=3j(w)tendsto
-90o(n-m)=0o
66
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandtheNyquistPlot.
Solution.①BaselinePointSlope②③④Check
TherightmostslopeofL(w)is-20(n-m)=-80dB/decThenumberofturningpoints=3j(w)
-90o(n-m)=-360o67
BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandthe
NyquistPlot.
68
ObtainthetransferfunctionfromtheBodediagram.Solution.Fromtheplot
CorrespondingrelationbetweentheBodediagramandNyquistPlot:Turningfrequency
CutoffFrequency
wc:69
Solution.Fromthediagram:ObtainthetransferfunctionfromtheBodediagram.70
CorrespondingrelationbetweentheBodediagramandNyquistPlot:
CutoffFrequency
wc:71
BodeDiagramForOpen-loopSystemsObtainG(s)fromtheBodediagram.Solution.SolutionⅡSolutionⅠSolutionⅢProof:72
BodeDiagramForOpen-loopSystemsObtainG(s)andsketch
j(w)andtheNyquistplotforgivenL(w)ofaminimumphasesystem.Solution⑴III⑵Sketching
j(w)⑶73
BodeDiagramForOpen-loopSystems⑴⑵⑶⑷748.5PerformanceSpecificationintheFrequencyDomainDiscusstherelationshipbetweentheexpectedtransientresponseandthefrequencyresponseofthesystemForasimplesecond-ordersystem,wehavealreadyresulttothisproblem.Thetransferfunctionofsecond-orderclosed-loopsystemisThefrequencyresponseofthesystemisThesecond-ordersystem,thedampingrationofthesystemisrelatedtothemaximummagnitudeMpω
,thefrequencyωr-resonantfrequencyThebandwidth,ωB,isameasureofasystem’sabilitytofaithfullyreproduceaninputsignal8.5PerformanceSpecificationintheFrequencyDomain8.6LogMagnitudeandPhaseDiagramThereareseveralalternativemethodsofpresentingthefrequencyresponseofafunctionGH(jω).(1).Thepolarplot(2).TheBodediagramNowweintroduceanalternativeapproachtoportrayingthefrequencyresponsegraphically(3).Log-magnitude-phasediagram:thelogarithmicmagnitudeindBversusthephaseangleforarangeoffrequencies.Forexample,atransferfunctionisForexample,atransferfunctionis8.7DesignExample:EngravingMachineControlSystemTheengravingmachineTherearetwomotorsinthex-axisAseparatemotorisusedforbothy-axisandz-axisTheblockdiagrammodelforthex-axispositioncontrolsystemisThegoalistoselectanappropriategainK,utilizingfrequencyresponsemethods,sothatthetimeresponsetostepcommandsisacceptable8.7DesignExample:EngravingMachineControlSystemFirst,obtaintheopen-loopandclosed-loopBodediagramTheopen-looptransferfunction(frequencydomain)Wearbitrarilyselectk=2Thenopen-looptransferfunction8.7DesignExample:EngravingMachineControlSystemTheclosed-looptransferfunctionWeassumethatthesystemhasdominantsecond-orderroots,thesystemmaybesecond-orderformFromtheBodediagram,weget8.7DesignExample:EngravingMachineControlSystemWeareapproximatingT(s)asasecond-ordersystem,thenwehaveForseco
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲農莊出租協議書
- 車輛購買贈予協議書
- Brand KPIs for shoes Russell Bromley in the United Kingdom-外文版培訓課件(2025.2)
- 車位委托出租協議書
- 惡性腫瘤細胞生物學特征與防治策略
- 廠房金鹵燈訂購協議書
- 超市啤酒合作協議書
- 體育館培訓合同協議書
- 重慶小面合同協議書
- 高空安裝安全協議書
- 中國城市規劃與建設發展報告
- 人工智能技術與知識產權保護
- 交通運輸行業消防隱患排查措施
- 養生館員工管理制度
- 第三單元 傳承中華傳統文化 單元測試題(含答案)-2024-2025學年下學期 七年級道德與法治
- 2025年檔案管理員試題及答案
- 《接地線掛設操作》課件
- 檢驗科三基試題庫與參考答案
- DBJ50-T-228-2015 建設工程綠色施工規范
- 2025書記員招聘考試題庫及參考答案
- 電子商務中價格感知與消費者滿意度的關系研究
評論
0/150
提交評論