自動控制原理課件 Chapter 8 Frequency ResponseMethod學習資料_第1頁
自動控制原理課件 Chapter 8 Frequency ResponseMethod學習資料_第2頁
自動控制原理課件 Chapter 8 Frequency ResponseMethod學習資料_第3頁
自動控制原理課件 Chapter 8 Frequency ResponseMethod學習資料_第4頁
自動控制原理課件 Chapter 8 Frequency ResponseMethod學習資料_第5頁
已閱讀5頁,還剩92頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Chapter8

FrequencyResponseMethodCurriculumSystemSystemmodelingPerformanceissuesanalysiscorrectionTimedomainComplexdomainFrequencydomain8.1IntroductionLinearconstantcoefficientsystemsInputsignal:sinusoidal(frequency,magnitude,andphase)Keyconcepts:(8.1)FrequencyresponseFrequencycharacteristicRepresentationoffrequencycharacteristic(howtogetthem?)Polarplot(8.2)Bodeplot(8.2,8.3)Logmagnitudeandphasediagram(8.6)ApplicationsDeterminethesteady-stateresponsetoasinusoidalinput(8.1)Determinethetransferfunctionbyexperiment(8.4)Analyzeperformancespecificationinthefrequencydomain(8.5)Stabilityanalysis(chapter9)andDesign(chapter10)

Featuresoffrequencydomainanalysismethod⑴Thismethodstudieshowthemagnitudeandphaseofsinusoidalsteady-statevarywiththefrequency⑵Studiesthe

stabilityandperformanceoftheclosed-loopsystembytheopen-loopfrequencycharacteristics⑶Agraphicanalysismethod

⑷Anapproximatemethod8.1Introduction48.1IntroductionThefrequencyresponseofasystemisdefinedasthesteady-stateresponseofthesystemtoasinusoidalinputsignal.

Theresultingoutputsignalforalinearsystem,aswellassignalsthroughoutthesystem,issinusoidalwiththesamefrequencyasinputsinusoidalinthesteadystate;

Itdiffersfromtheinputwaveformonlyinamplitudeandphaseangle,andtheamountofdifferenceisafunctionoftheinputfrequency.Thesteady-stateoutputsignaldependsonlyonthemagnitudeandphaseofT(jω)ataspecificfrequency

ωs.

Y(s)=T(s)R(s)withr(t)=Asinωt.whereareassumedtobedistinctpoles.Theninpartialfractionformwehavewhereaandβ

areconstantswhichareproblemdependent.TakingtheinverseLaplacetransformyieldsDemonstrationexampleStaticoutputofthesystem

Parametersband

canbeobtainedby7

T(jω)canberepresentedby

8Oneadvantageofthefrequencyresponsemethodisthatexperimentaldeterminationofthefrequencyresponseofasystemiseasilyaccomplishedandisthemostreliableanduncomplicatedmethodfortheexperimentalanalysisofasystem.Furthermore,thedesignofasysteminthefrequencydomainprovidesthedesignerwithcontrolofthebandwidthofasystem,aswellassomemeasureoftheresponseofthesystemtoundesirednoiseanddisturbances.Asecondadvantageisthatthetransferfunctiondescribingthesinusoidalsteady-statebehaviorofasystemcanbeobtainedbyreplacingswithjωinthesystemtransferfunctionT(s)(calledasfrequencycharacteristic).Thebasicdisadvantageofthefrequencyresponsemethodforanalysisanddesignistheindirectlinkbetweenthefrequencyandthetimedomain.

ConceptofFrequency-ResponseCharacteristics

ConsidertheRCcircuitshowninthefigure(ur(t)=Asinwt).Obtainuc(t).Modeling10

DefinitionofFrequency-ResponseCharacteristicDefinition1Definition3Definition2Magnitude-FrequencyCharacteristic

Phase-Frequency

Characteristic

ConceptofFrequency-ResponseCharacteristics

11

Considerthesystemshowninthefigure(r(t)=3sin(2t+30o)).Obtaincs(t),es(t).Solution.ConceptofFrequency-ResponseCharacteristics

12

Frequency-ResponseCharacteristicsinGraphicalFormsⅠ.Frequencycharacteristic

Ⅱ.Magnitudeandphasecharacteristic

(Nyquist)Ⅲ.Log-magnitude-frequencycharacteristic

(Bode)Ⅳ.Log-phase-frequencycharacteristic

(Nichols)Magnitude-FrequencyPhase-FrequencyLog-magnitude-frequencyLog-phase-frequencyForConceptofFrequency-ResponseCharacteristics

13

CorrelationbetweenMathematicalmodelsConceptofFrequency-ResponseCharacteristics

14

Themagnitude-phasecurveforFirst-OrderfactorsMagnitude-PhaseFrequencyCharacteristics15

Magnitude-phasecharacteristicsoftypicalfactorsProve:Theamplitude-phasecharacteristicsoffirst-orderfactorsareasemicircle.

(Lowerhalfofthecircle)Magnitude-PhaseFrequencyCharacteristics16

Magnitude-phasecharacteristicsFromtheshapeofthecurve,weknowthatFromthestartingpoint:Fromj0From

j1:Obtainthetransferfunctionfromthemagnitude-phasecharacteristicsshowninthefigure.Magnitude-PhaseFrequencyCharacteristics17

UnstableFirst-OrderFactors⑸ReciprocalFirst-OrderFactorsMagnitude-PhaseFrequencyCharacteristics18Example8.2PolarplotoftransferfunctionThefrequencycharacteristicisThemagnitudeandphaseangleare8.2FrequencyResponsePlotsUsetherealandimaginarypartsofG(jω)as8.2FrequencyResponsePlots

§Magnitude-PhaseFrequencyCharacteristics(Nyquist)§Magnitude-PhaseFrequencyCharacteristicsofTypicalFactors⑴Thegain⑵Derivativefactor⑶Integralfactor⑷First-orderfactor21AmplitudeandPhaseFrequency⑹OscillationlinkAmplitudeandPhaseFrequencyCharacteristicsofTypicalLink22AmplitudeandPhaseFrequencyCharacteristicsResonance

frequency

wrandresonantpeaking

Mr

Example4:When23AmplitudeandPhaseFrequencyCharacteristicsResonancefrequencyResonantpeakingwr,Mr

不存在24AmplitudeandPhaseFrequencyCharacteristics

AmplitudeandphasecharacteristicsTheamplitudeandphasecharacteristicsisshowninfigure.Determinethetransferfunction.Fromtheshapeofcurve,wehaveFromstartingpoint:Fromj(w0):From|G(w0)|:25AmplitudeandPhaseFrequencyCharacteristics

UnstableOscillationlink26

⑺ReciprocalQuadraticFactor

Magnitude-PhaseFrequencyCharacteristics27

⑻DelayFactorMagnitude-PhaseFrequencyCharacteristics28

NyquistPlotsofTypicalFactors⑴⑵⑶⑻⑸⑷⑹⑺Magnitude-PhaseFrequencyCharacteristics29

NyquistPlotofOpen-LoopTransferFunctionsNyquistPlotofOpen-loopTransferFunctionsStartingpoint

Endingpoint

30

NyquistPlotofOpen-LoopTransferFunctions31

A:

B:NyquistPlotofOpen-LoopTransferFunctions

32

SketchtheNyquistplotforSolution.Asymptotes:Intersectionpointwithrealaxis:

NyquistPlotofOpen-LoopTransferFunctions

33Example8.4Bodediagramofatwin-TnetworkThedeterminationofthefrequencyresponseusingthepole-zerodiagramandvectorstojωThetransferfunctionofthenetworkis8.2FrequencyResponsePlots34Ifthezerosareat±j1,andthepolesareatAtω=0Atω=1/τ

When8.2FrequencyResponsePlots358.2FrequencyResponsePlotsThelimitationsofpolarplotsTheadditionofpolesorzerostoanexistingsystemrequirestherecalculationofthefrequencyresponseFurthermore,calculatingthefrequencyresponseinthismanneristediousanddoesnotindicatetheeffectoftheindividualpolesorzeros.BodeDiagramsSemilogCoordinate37

BodeDiagrams

⑴Magitudemultiplication=Logarithmaddition

Convenientforsegmentaddition;LongitudinalaxisAbscissaAxisFeaturesofthecoordinateFeaturesScaledby

lgw,dec“Decade”按lgw

刻度,dec“十倍頻程”Markedbyw.Distancereflectingratio按w標定,等距等比“Decibel”

⑵Representsfrequencycharacteristicinlargescale;⑶L(w)canbedeterminedbyexperiment,socanG(s).AnintroductionforBodediagrams(LogarithmicPlots)38Theprimaryadvantageofthelogarithmicplotistheconversionofmultiplicativefactors,suchas(jωτ+1),intoadditivefactors,20log(jωτ+1)byvirtueofthedefinitionoflogarithmicgain.ThegeneraltransferfunctionisGeneralcase39ThelogarithmicmagnitudeofG(jω)isThephaseangleplotis401.ConstantgainKb2.Poles(orzeros)attheorigin(jω)3.Poles(orzeros)attherealaxis(jωτ+1)4.Complexconjugatepoles(orzeros)Notes:WecandeterminethelogarithmicmagnitudeplotandphaseangleforthesefourfactorsandthenutilizethemtoobtainaBodediagramforanygeneralformofatransferfunctionTypicalfactors418.2FrequencyResponsePlotsThecurvesforeachfactorareobtainedandthenaddedtogethergraphicallytoobtainthecurvesforthecompletetransferfunction.Furthermorethisprocedurecanbesimplifiedbyusingtheasymptoticapproximationstothesecurvesandobtainingtheactualcurvesonlyatspecificimportantfrequencies.42ConstantGainKbThelogarithmicgainfortheconstantKbis8.2TheBodediagramoftypicalfactorsThegaincurveisahorizontallineontheBodediagram.Ifthegainisanegativevalue,-Kb,thelogarithmicgainremains20logKb.Thenegativesignisaccountedforbythephaseangle,-180°.Poles(orzeros)attheorigin(jω)LogarithmicmagnitudePhaseangledB8.2TheBodediagramoftypicalfactorsPolesorZerosontheRealAxisLogarithmicmagnitudeTheasymptoticcurveforω<<1/τis20log1=0dB,andtheasymptoticcurveforω>>1/τis–20logωτ,whichhasaslopeof–20dB/decade.Theintersectionofthetwoasymptotesoccurswhenω=1/τ,thebreakfrequency.Theactuallogarithmicgainis–3dBwhenω=1/τThephaseangleis8.2TheBodediagramoftypicalfactorsThephaseanglecurve8.2TheBodediagramoftypicalfactors46

TheLogarithmicplotoffirst-orderfactorsissymmetricaboutthe

(w=1/T,j=-45

)point.Prove:Suppose47ComplexConjugatePolesorZerosThelogarithmicmagnitudeforapairofcomplexconjugatepolesisThephaseangleisWhenu<<1,themagnitudeis

andphaseangleis00

Whenu>>1,themagnitudeis

andphaseangleis-1800

8.2TheBodediagramoftypicalfactors8.2FrequencyResponsePlots8.2FrequencyResponsePlotsThemaximumvalueofthefrequencyresponse,MPω,occursattheresonantfrequencyωr

Theresonantfrequencyisandthemaximumvalueofthemagnitude|G(ω)|is8.2FrequencyResponsePlots

BodeDiagramsReview

TheBodediagramoftypicalfactors⑴TheGain⑵DerivertiveFactor⑶IntegralFactor⑷First-OrderFactor52

⑸ReciprocalFirst-OderFactorBodeDiagramsReview53

⑹QuadraticFactorsBodeDiagramsReview54

BodeDiagramsReview⑺ReceprocalQuadraticFactors55

⑻DelayLinkBodeDiagramsReview568.3AnexampleofdrawingtheBodediagramTheBodediagramofatransferfunctionG(s)ThefactorshaveAconstantgainK=5ApoleattheoriginApoleatω=2Azeroatω=10Apairofcomplexpolesatω=ωn=5057588.3AnexampleofdrawingtheBodediagram5960618.3AnexampleofdrawingtheBodediagram62Insummary,onemayobtainapproximatecurvesforthemagnitudeandphaseshiftofatransferfunctionG(jω)inordertodeterminetheimportantfrequencyranges.Withintherelativelysmallimportantfrequencyranges,theexactmagnitudeandphaseshiftcanbereadilyevaluatebyusingtheexactequations.TheexactG(jω)canbeplottedbyMatlab

63BodeDiagramForOpen-loopSystemsThestepstosketchBodediagramforopen-loopsystem⑴Changingopen-loop

transferfunction

G(jw)

intotheendofastandardform⑵Listingtheturningfrequencyinturn.⑶確定基準線0.2Inertiallink0.5First-ordercompositedifferential

1OscillationLink基準點斜率⑷DrawingthediagramFirst-orderInertiallink-20dB/decCompositedifferential+20dB/decSecond-orderOscillationLink-40dB/decCompositedifferential-40dB/decw=0.2

Inertiallink-20w=0.5

First-ordercompositedifferential+20w=1

OscillationLink-40第一轉折頻率之左的特性及其延長線64BodeDiagramForOpen-loopSystems⑸Correction⑹Check①Whentheturningfrequencyoftwoinertiallinksareclosetoeachother②Whenoscillation

x(0.38,0.8)

①TherightmostslopeofL(w)isequalto

-20(n-m)dB/dec

②Thenumberofturningpoint=(Inertial)+(First-ordercompositedifferential)+(Oscillation)+(Second-ordercompositedifferential)③j(w)

-90°(n-m)基準點斜率w=0.2

Inertiallink-20w=0.5

First-ordercompositedifferential+20w=1

OscillationLink-4065

BodeDiagramForOpen-loopSystemsBasepoint

.SketchBodediagramSolution.①Standardform②Turningfrequencies③Baseline④Plotting

Slope

CheckTherightmostslopeofL(w)is-20(n-m)=0Thenumberofturningpoints=3j(w)tendsto

-90o(n-m)=0o

66

BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandtheNyquistPlot.

Solution.①BaselinePointSlope②③④Check

TherightmostslopeofL(w)is-20(n-m)=-80dB/decThenumberofturningpoints=3j(w)

-90o(n-m)=-360o67

BodeDiagramForOpen-loopSystemsSketchtheBodeDiagramandthe

NyquistPlot.

68

ObtainthetransferfunctionfromtheBodediagram.Solution.Fromtheplot

CorrespondingrelationbetweentheBodediagramandNyquistPlot:Turningfrequency

CutoffFrequency

wc:69

Solution.Fromthediagram:ObtainthetransferfunctionfromtheBodediagram.70

CorrespondingrelationbetweentheBodediagramandNyquistPlot:

CutoffFrequency

wc:71

BodeDiagramForOpen-loopSystemsObtainG(s)fromtheBodediagram.Solution.SolutionⅡSolutionⅠSolutionⅢProof:72

BodeDiagramForOpen-loopSystemsObtainG(s)andsketch

j(w)andtheNyquistplotforgivenL(w)ofaminimumphasesystem.Solution⑴III⑵Sketching

j(w)⑶73

BodeDiagramForOpen-loopSystems⑴⑵⑶⑷748.5PerformanceSpecificationintheFrequencyDomainDiscusstherelationshipbetweentheexpectedtransientresponseandthefrequencyresponseofthesystemForasimplesecond-ordersystem,wehavealreadyresulttothisproblem.Thetransferfunctionofsecond-orderclosed-loopsystemisThefrequencyresponseofthesystemisThesecond-ordersystem,thedampingrationofthesystemisrelatedtothemaximummagnitudeMpω

,thefrequencyωr-resonantfrequencyThebandwidth,ωB,isameasureofasystem’sabilitytofaithfullyreproduceaninputsignal8.5PerformanceSpecificationintheFrequencyDomain8.6LogMagnitudeandPhaseDiagramThereareseveralalternativemethodsofpresentingthefrequencyresponseofafunctionGH(jω).(1).Thepolarplot(2).TheBodediagramNowweintroduceanalternativeapproachtoportrayingthefrequencyresponsegraphically(3).Log-magnitude-phasediagram:thelogarithmicmagnitudeindBversusthephaseangleforarangeoffrequencies.Forexample,atransferfunctionisForexample,atransferfunctionis8.7DesignExample:EngravingMachineControlSystemTheengravingmachineTherearetwomotorsinthex-axisAseparatemotorisusedforbothy-axisandz-axisTheblockdiagrammodelforthex-axispositioncontrolsystemisThegoalistoselectanappropriategainK,utilizingfrequencyresponsemethods,sothatthetimeresponsetostepcommandsisacceptable8.7DesignExample:EngravingMachineControlSystemFirst,obtaintheopen-loopandclosed-loopBodediagramTheopen-looptransferfunction(frequencydomain)Wearbitrarilyselectk=2Thenopen-looptransferfunction8.7DesignExample:EngravingMachineControlSystemTheclosed-looptransferfunctionWeassumethatthesystemhasdominantsecond-orderroots,thesystemmaybesecond-orderformFromtheBodediagram,weget8.7DesignExample:EngravingMachineControlSystemWeareapproximatingT(s)asasecond-ordersystem,thenwehaveForseco

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論