




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省西南三校合作體2025年高三第二次適應性檢測試題數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若θ是第二象限角且sinθ=,則=A. B. C. D.2.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-3.如圖是國家統計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數大于13340萬人次D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差4.記集合和集合表示的平面區域分別是和,若在區域內任取一點,則該點落在區域的概率為()A. B. C. D.5.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業人員中,低收入家庭共有1800戶C.在該市無業人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶6.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度7.已知函數,將函數的圖象向左平移個單位長度,得到函數的圖象,若函數的圖象的一條對稱軸是,則的最小值為A. B. C. D.8.為研究某咖啡店每日的熱咖啡銷售量和氣溫之間是否具有線性相關關系,統計該店2017年每周六的銷售量及當天氣溫得到如圖所示的散點圖(軸表示氣溫,軸表示銷售量),由散點圖可知與的相關關系為()A.正相關,相關系數的值為B.負相關,相關系數的值為C.負相關,相關系數的值為D.正相關,相關負數的值為9.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.10.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或11.設,,,則的大小關系是()A. B. C. D.12.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______14.若的展開式中所有項的系數之和為,則______,含項的系數是______(用數字作答).15.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.16.某高中共有1800人,其中高一、高二、高三年級的人數依次成等差數列,現用分層抽樣的方法從中抽取60人,那么高二年級被抽取的人數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).18.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機抽取了20人的分數.以下莖葉圖記錄了他們的考試分數(以十位數字為莖,個位數字為葉):若分數不低于95分,則稱該員工的成績為“優秀”.(1)從這20人中任取3人,求恰有1人成績“優秀”的概率;(2)根據這20人的分數補全下方的頻率分布表和頻率分布直方圖,并根據頻率分布直方圖解決下面的問題.組別分組頻數頻率1234①估計所有員工的平均分數(同一組中的數據用該組區間的中點值作代表);②若從所有員工中任選3人,記表示抽到的員工成績為“優秀”的人數,求的分布列和數學期望.19.(12分)設拋物線的焦點為,準線為,為拋物線過焦點的弦,已知以為直徑的圓與相切于點.(1)求的值及圓的方程;(2)設為上任意一點,過點作的切線,切點為,證明:.20.(12分)高鐵和航空的飛速發展不僅方便了人們的出行,更帶動了我國經濟的巨大發展.據統計,在2018年這一年內從市到市乘坐高鐵或飛機出行的成年人約為萬人次.為了解乘客出行的滿意度,現從中隨機抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機乘坐高鐵乘坐飛機10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個,求這個出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數學期望;(3)如果甲將要從市出發到市,那么根據表格中的數據,你建議甲是乘坐高鐵還是飛機?并說明理由.21.(12分)已知函數()的圖象在處的切線為(為自然對數的底數)(1)求的值;(2)若,且對任意恒成立,求的最大值.22.(10分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由θ是第二象限角且sinθ=知:,.所以.2、C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發現∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.3、D【解析】
ABD可通過統計圖直接分析得出結論,C可通過計算中位數判斷選項是否正確.【詳解】A.由統計圖可知:2014年入境游客萬人次最少,故正確;B.由統計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數應為與的平均數,大于萬次,故正確;D.由統計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統計圖表信息的讀取以及對中位數和方差的理解,難度較易.處理問題的關鍵是能通過所給統計圖,分析出對應的信息,對學生分析問題的能力有一定要求.4、C【解析】
據題意可知,是與面積有關的幾何概率,要求落在區域內的概率,只要求、所表示區域的面積,然后代入概率公式,計算即可得答案.【詳解】根據題意可得集合所表示的區域即為如圖所表示:的圓及內部的平面區域,面積為,集合,,表示的平面區域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區域的面積.5、D【解析】
根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.6、B【解析】
分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),
得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.7、C【解析】
將函數的圖象向左平移個單位長度,得到函數的圖象,因為函數的圖象的一條對稱軸是,所以,即,所以,又,所以的最小值為.故選C.8、C【解析】
根據正負相關的概念判斷.【詳解】由散點圖知隨著的增大而減小,因此是負相關.相關系數為負.故選:C.【點睛】本題考查變量的相關關系,考查正相關和負相關的區別.掌握正負相關的定義是解題基礎.9、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.10、D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.11、A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.12、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
第一空:將圓與聯立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯立,得到,與結合可得為等差數列,進而可得.【詳解】當r1=1時,圓,與聯立消去得,則,解得;由圖可知當時,①,將與聯立消去得,則,整理得,代入①得,整理得,則.故答案為:;.【點睛】本題是拋物線與圓的關系背景下的數列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.14、【解析】的展開式中所有項的系數之和為,,,項的系數是,故答案為(1),(2).15、【解析】
求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.16、【解析】
由三個年級人數成等差數列和總人數可求得高二年級共有人,根據抽樣比可求得結果.【詳解】設高一、高二、高三人數分別為,則且,解得:,用分層抽樣的方法抽取人,那么高二年級被抽取的人數為人.故答案為:.【點睛】本題考查分層抽樣問題的求解,涉及到等差數列的相關知識,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.18、(1);(2)①82,②分布列見解析,【解析】
(1)從20人中任取3人共有種結果,恰有1人成績“優秀”共有種結果,利用古典概型的概率計算公式計算即可;(2)①平均數的估計值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項分布,不是超幾何分布,利用二項分布的分布列及期望公式求解即可.【詳解】(1)設從20人中任取3人恰有1人成績“優秀”為事件,則,所以,恰有1人“優秀”的概率為.(2)組別分組頻數頻率120.01260.03380.04440.02①,估計所有員工的平均分為82②的可能取值為0、1、2、3,隨機選取1人是“優秀”的概率為,∴;;;;∴的分布列為0123∵,∴數學期望.【點睛】本題考查古典概型的概率計算以及二項分布期望的問題,涉及到頻率分布直方圖、平均數的估計值等知識,是一道容易題.19、(1)2,;(2)證明見解析.【解析】
(1)由題意得的方程為,根據為拋物線過焦點的弦,以為直徑的圓與相切于點..利用拋物線和圓的對稱性,可得,圓心為,半徑為2.(2)設,的方程為,代入的方程,得,根據直線與拋物線相切,令,得,代入,解得.將代入的方程,得,得到點N的坐標為,然后求解.【詳解】(1)解:由題意得的方程為,所以,解得.又由拋物線和圓的對稱性可知,所求圓的圓心為,半徑為2.所以圓的方程為.(2)證明:易知直線的斜率存在且不為0,設,的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點N的坐標為,所以,,故.【點睛】本題主要考查拋物線的定義幾何性質以及直線與拋物線的位置關系,還考查了數形結合的思想和運算求解的能力,屬于中檔題.20、(1)(2)分布列見解析,數學期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計算公式計算得出;(2)依題意可知服從二項分布,先計算出隨機選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數學期望;(3)可以計算滿意度均值來比較乘坐高鐵還是飛機.【詳解】(1)設事件:“在樣本中任取個,這個出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個,這個出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因為在2018年從市到市乘坐高鐵的所有成年人中,隨機選取人次,此人為老年人概率是,所以,,,所以隨機變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,
參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機的人滿意度均值為:因為,所以建議甲乘坐高鐵從市到市.【點睛】本題主要考查了分層抽樣的應用、古典概型的概率計算、以及離散型隨機變量的分布列和期望的計算,解題關鍵是對題意的理解,概率類型的判斷,屬于中檔題.21、(1)a=-1,b=1;(2)-1.【解析】(1)對求導得,根據函數的圖象在處的切線為,列出方程組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農村生活污水處理設施及配套管網建設項目可行性研究報告(模板)
- 2024年農業植保員考試咨詢試題與答案綜合解讀
- 2024年植保員職業能力框架試題及答案
- 用電安全課件教案
- 辦公大樓裝修工程可行性研究報告(范文)
- 數控技術在模具設計中的作用試題及答案
- 實戰演練 2024年籃球裁判員考試試題及答案
- 模具設計師資格考試的核心考點試題及答案
- 救生員心理調整技巧與試題及答案評估
- 2024農業植保員實戰演練試題及答案
- 工業機器人現場編程與仿真 6.1 創建動態夾具Smart組件
- 航空發動機控制知到智慧樹章節測試課后答案2024年秋中國民航大學
- 廣東省2025年高三高考模擬地理試卷試題(含答案詳解)
- 溫泉養老、養生及醫療保健項目可行性研究報告
- 信息安全與數據備份
- 濕法厭氧消化副產物資源化-深度研究
- 情感信息傳播模型-深度研究
- 外賣騎手交通安全培訓
- JC-T 1099-2023 硫鋁酸鈣改性硅酸鹽水泥
- 2025年中國華電集團公司招聘筆試參考題庫含答案解析
- 收費站特情處理培訓
評論
0/150
提交評論