




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省成都經開實中高三第二次高考適應性考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數中,在定義域上單調遞增,且值域為的是()A. B. C. D.2.若函數f(x)=x3+x2-在區間(a,a+5)上存在最小值,則實數a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)3.陀螺是中國民間最早的娛樂工具,也稱陀羅.如圖,網格紙上小正方形的邊長為,粗線畫出的是某個陀螺的三視圖,則該陀螺的表面積為()A. B.C. D.4.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.5.集合中含有的元素個數為()A.4 B.6 C.8 D.126.若數列滿足且,則使的的值為()A. B. C. D.7.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}8.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.49.若函數,在區間上任取三個實數,,均存在以,,為邊長的三角形,則實數的取值范圍是()A. B. C. D.10.已知是過拋物線焦點的弦,是原點,則()A.-2 B.-4 C.3 D.-311.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,指數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節,連排六節,一天課程講座排課有如下要求:“數”必須排在第三節,且“射”和“御”兩門課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種12.已知是函數的極大值點,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列滿足,且恒成立,則的值為____________.14.若展開式的二項式系數之和為64,則展開式各項系數和為__________.15.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.16.學校藝術節對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:甲說:“作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“是或作品獲得一等獎”,若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某房地產開發商在其開發的某小區前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發商計劃從點出發建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.18.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數k的值.19.(12分)已知函數.(1)證明:當時,;(2)若函數只有一個零點,求正實數的值.20.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.21.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.22.(10分)已知函數,其中為自然對數的底數.(1)若函數在區間上是單調函數,試求的取值范圍;(2)若函數在區間上恰有3個零點,且,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
分別作出各個選項中的函數的圖象,根據圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數在定義域上不單調,錯誤.故選:.【點睛】本題考查函數單調性和值域的判斷問題,屬于基礎題.2、C【解析】
求函數導數,分析函數單調性得到函數的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數,在(-2,0)上是減函數,作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結合圖象可知,解得a∈[-3,0),故選C.【點睛】本題主要考查了利用函數導數研究函數的單調性,進而研究函數的最值,屬于常考題型.3、C【解析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可,【詳解】由題意可知幾何體的直觀圖如圖:上部是底面半徑為1,高為3的圓柱,下部是底面半徑為2,高為2的圓錐,幾何體的表面積為:,故選:C【點睛】本題考查三視圖求解幾何體的表面積,判斷幾何體的形狀是解題的關鍵.4、C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數性質的應用,涉及到函數的平移、函數的對稱性,考查學生數形結合、數學運算的能力,是一道中檔題.5、B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B6、C【解析】因為,所以是等差數列,且公差,則,所以由題設可得,則,應選答案C.7、A【解析】
解出集合A和B即可求得兩個集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點睛】此題考查求集合的并集,關鍵在于準確求解不等式,根據描述法表示的集合,準確寫出集合中的元素.8、A【解析】
采用數形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.9、D【解析】
利用導數求得在區間上的最大值和最小,根據三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區間上的最大值為.要使在區間上任取三個實數,,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數研究函數的最值,考查恒成立問題的求解,屬于中檔題.10、D【解析】
設,,設:,聯立方程得到,計算得到答案.【詳解】設,,故.易知直線斜率不為,設:,聯立方程,得到,故,故.故選:.【點睛】本題考查了拋物線中的向量的數量積,設直線為可以簡化運算,是解題的關鍵.11、C【解析】
根據“數”排在第三節,則“射”和“御”兩門課程相鄰有3類排法,再考慮兩者的順序,有種,剩余的3門全排列,即可求解.【詳解】由題意,“數”排在第三節,則“射”和“御”兩門課程相鄰時,可排在第1節和第2節或第4節和第5節或第5節和第6節,有3種,再考慮兩者的順序,有種,剩余的3門全排列,安排在剩下的3個位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.【點睛】本題主要考查了排列、組合的應用,其中解答中認真審題,根據題設條件,先排列有限制條件的元素是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.12、B【解析】
方法一:令,則,,當,時,,單調遞減,∴時,,,且,∴,即在上單調遞增,時,,,且,∴,即在上單調遞減,∴是函數的極大值點,∴滿足題意;當時,存在使得,即,又在上單調遞減,∴時,,所以,這與是函數的極大值點矛盾.綜上,.故選B.方法二:依據極值的定義,要使是函數的極大值點,須在的左側附近,,即;在的右側附近,,即.易知,時,與相切于原點,所以根據與的圖象關系,可得,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易得,所以是等差數列,再利用等差數列的通項公式計算即可.【詳解】由已知,,因,所以,所以數列是以為首項,3為公差的等差數列,故,所以.故答案為:【點睛】本題考查由遞推數列求數列中的某項,考查學生等價轉化的能力,是一道容易題.14、1【解析】
由題意得展開式的二項式系數之和求出的值,然后再計算展開式各項系數的和.【詳解】由題意展開式的二項式系數之和為,即,故,令,則展開式各項系數的和為.故答案為:【點睛】本題考查了二項展開式的二項式系數和項的系數和問題,需要運用定義加以區分,并能夠運用公式和賦值法求解結果,需要掌握解題方法.15、【解析】
設出兩點的坐標,結合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設,由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.16、C【解析】
假設獲得一等獎的作品,判斷四位同學說對的人數.【詳解】分別獲獎的說對人數如下表:獲獎作品ABCD甲對錯錯錯乙錯錯對錯丙對錯對錯丁對錯錯對說對人數3021故獲得一等獎的作品是C.【點睛】本題考查邏輯推理,常用方法有:1、直接推理結果,2、假設結果檢驗條件.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)米.【解析】
(1)過點作于點再在中利用正弦定理求解,再根據求解,進而求得.再根據確定的范圍即可.(2)根據(1)有,再設,求導分析函數的單調性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調遞增;當時,單調遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數在實際中的應用,需要根據題意建立角度與長度間的關系,進而求導分析函數的單調性,根據三角函數值求解對應的最值即可.屬于難題.18、(1);(2)或.【解析】
(1)聯立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數關系解決相交弦問題,考查計算求解能力,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數求證即可(2)直接求導可得,,令,得或,故根據0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數的增區間為,減區間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數在區間上單調遞減.又,故此時函數僅有一個零點為0;②當時,令,得,故函數的增區間為,減區間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數還有一個零點,不符合題意;③當時,令得,故函數的增區間為,減區間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數還有一個零點,不符合題意.綜上,所求實數的值為.【點睛】本題考查不等式的恒成立問題和函數的零點問題,本題的難點在于把導數化成因式分解的形式,如,進而分類討論,本題屬于難題20、(1)證明見詳解;(2)【解析】
(1)取中點,根據,利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設,由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應用,還考查線面角,學會使用建系的方法來解決立體幾何問題,將幾何問題代數化,化繁為簡,屬中檔題.21、A【解析】
由正弦定理化簡得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創新能力2025年試題及答案總結
- 行政管理專科項目實施試題及答案
- 2025年衛生資格考試背景調查與試題及答案
- 浙江省杭州市西湖區2025年七年級下學期語文期末考試試卷及答案
- 藥物研發數據安全保護與處理合同
- 電力負荷預測與調控協議
- 生物芯片研發、生產及臨床應用合作框架協議
- 高科技產業股權收益權轉讓與研發合作協議
- 生物醫藥名義股東合伙人研發合作協議
- 家長會課件集錦
- 基于深度學習的西北地區沙塵天氣級聯預測模型研究
- 《危險化學品企業安全生產標準化規范》專業深度解讀與應用培訓指導材料之2:5管理要求-5.1 安全領導力(雷澤佳編制-2025A0)
- 《醫療素養提升》課件
- 2025年人教版(2024)小學數學一年級下冊期中考試測試卷附參考答案
- 血液透析患者預防跌倒
- 餡料間管理制度
- 智能座艙試題答案及解析
- 2024年度云南省二級造價工程師之安裝工程建設工程計量與計價實務強化訓練試卷B卷附答案
- 電力工程項目管理試題及答案
- 車位租賃協議書范本
- 無廢城市知識培訓課件
評論
0/150
提交評論