2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題_第1頁
2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題_第2頁
2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題_第3頁
2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題_第4頁
2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆上海市外國語大學附屬上外高中高三數學試題仿真試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:是“直線和直線互相垂直”的充要條件;命題:對任意都有零點;則下列命題為真命題的是()A. B. C. D.2.設,則(

)A.10 B.11 C.12 D.133.若函數的圖象如圖所示,則的解析式可能是()A. B. C. D.4.執行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.5.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.46.設,,,則()A. B. C. D.7.拋物線的焦點為,則經過點與點且與拋物線的準線相切的圓的個數有()A.1個 B.2個 C.0個 D.無數個8.設函數,當時,,則()A. B. C.1 D.9.已知的內角、、的對邊分別為、、,且,,為邊上的中線,若,則的面積為()A. B. C. D.10.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”12.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某公司生產甲、乙兩種桶裝產品.已知生產甲產品1桶需耗原料1千克、原料2千克;生產乙產品1桶需耗原料2千克,原料1千克.每桶甲產品的利潤是300元,每桶乙產品的利潤是400元.公司在生產這兩種產品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產計劃,從每天生產的甲、乙兩種產品中,公司共可獲得的最大利潤是__________元.14.函數的定義域為__________.15.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.16.角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經過點,則的值是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)函數,且恒成立.(1)求實數的集合;(2)當時,判斷圖象與圖象的交點個數,并證明.(參考數據:)18.(12分)已知.(1)若是上的增函數,求的取值范圍;(2)若函數有兩個極值點,判斷函數零點的個數.19.(12分)某機構組織的家庭教育活動上有一個游戲,每次由一個小孩與其一位家長參與,測試家長對小孩飲食習慣的了解程度.在每一輪游戲中,主持人給出A,B,C,D四種食物,要求小孩根據自己的喜愛程度對其排序,然后由家長猜測小孩的排序結果.設小孩對四種食物排除的序號依次為xAxBxCxD,家長猜測的序號依次為yAyByCyD,其中xAxBxCxD和yAyByCyD都是1,2,3,4四個數字的一種排列.定義隨機變量X=(xA﹣yA)2+(xB﹣yB)2+(xC﹣yC)2+(xD﹣yD)2,用X來衡量家長對小孩飲食習慣的了解程度.(1)若參與游戲的家長對小孩的飲食習慣完全不了解.(ⅰ)求他們在一輪游戲中,對四種食物排出的序號完全不同的概率;(ⅱ)求X的分布列(簡要說明方法,不用寫出詳細計算過程);(2)若有一組小孩和家長進行來三輪游戲,三輪的結果都滿足X<4,請判斷這位家長對小孩飲食習慣是否了解,說明理由.20.(12分)如圖,已知四棱錐,平面,底面為矩形,,為的中點,.(1)求線段的長.(2)若為線段上一點,且,求二面角的余弦值.21.(12分)已知函數.(1)解不等式;(2)使得,求實數的取值范圍.22.(10分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先分別判斷每一個命題的真假,再利用復合命題的真假判斷確定答案即可.【詳解】當時,直線和直線,即直線為和直線互相垂直,所以“”是直線和直線互相垂直“的充分條件,當直線和直線互相垂直時,,解得.所以“”是直線和直線互相垂直“的不必要條件.:“”是直線和直線互相垂直“的充分不必要條件,故是假命題.當時,沒有零點,所以命題是假命題.所以是真命題,是假命題,是假命題,是假命題.故選:.【點睛】本題主要考查充要條件的判斷和兩直線的位置關系,考查二次函數的圖象,考查學生對這些知識的理解掌握水平.2、B【解析】

根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.3、A【解析】

由函數性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數在第一象限的圖象無增區間,故D錯誤;故選:A.【點睛】本題考查已知函數的圖象判斷解析式問題,通過函數性質及特殊值利用排除法是解決本題的關鍵,難度一般.4、A【解析】

模擬執行程序框圖,依次寫出每次循環得到的的值,當,,退出循環,輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環,輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.5、A【解析】

由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題6、A【解析】

先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.7、B【解析】

圓心在的中垂線上,經過點,且與相切的圓的圓心到準線的距離與到焦點的距離相等,圓心在拋物線上,直線與拋物線交于2個點,得到2個圓.【詳解】因為點在拋物線上,又焦點,,由拋物線的定義知,過點、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點,這樣的交點共有2個,故過點、且與相切的圓的不同情況種數是2種.故選:.【點睛】本題主要考查拋物線的簡單性質,本題解題的關鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.8、A【解析】

由降冪公式,兩角和的正弦公式化函數為一個角的一個三角函數形式,然后由正弦函數性質求得參數值.【詳解】,時,,,∴,由題意,∴.故選:A.【點睛】本題考查二倍角公式,考查兩角和的正弦公式,考查正弦函數性質,掌握正弦函數性質是解題關鍵.9、B【解析】

延長到,使,連接,則四邊形為平行四邊形,根據余弦定理可求出,進而可得的面積.【詳解】解:延長到,使,連接,則四邊形為平行四邊形,則,,,在中,則,得,.故選:B.【點睛】本題考查余弦定理的應用,考查三角形面積公式的應用,其中根據中線作出平行四邊形是關鍵,是中檔題.10、B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.11、B【解析】

解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.12、C【解析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程。【詳解】設,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。二、填空題:本題共4小題,每小題5分,共20分。13、1元【解析】設分別生產甲乙兩種產品為桶,桶,利潤為元

則根據題意可得目標函數,作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當直線經過時,目標函數的截距最大,此時最大,

由可得,即此時最大,

即該公司每天生產的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規劃知識求利潤的最大值,根據條件建立不等式關系,以及利用線性規劃的知識進行求解是解決本題的關鍵.14、【解析】

根據函數成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數成立的條件.15、【解析】

根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.16、【解析】試題分析:由三角函數定義知,又由誘導公式知,所以答案應填:.考點:1、三角函數定義;2、誘導公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2個,證明見解析【解析】

(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點個數轉化為方程實數解的個數問題,然后構造函數,再利用導數討論此函數零點的個數.【詳解】(1)的定義域為,因為,1°當時,在上單調遞減,時,使得,與條件矛盾;2°當時,由,得;由,得,所以在上單調遞減,在上單調遞增,即有,由恒成立,所以恒成立,令,若;若;而時,,要使恒成立,故.(2)原問題轉化為方程實根個數問題,當時,圖象與圖象有且僅有2個交點,理由如下:由,即,令,因為,所以是的一根;,1°當時,,所以在上單調遞減,,即在上無實根;2°當時,,則在上單調遞遞增,又,所以在上有唯一實根,且滿足,①當時,在上單調遞減,此時在上無實根;②當時,在上單調遞增,,故在上有唯一實根.3°當時,由(1)知,在上單調遞增,所以,故,所以在上無實根.綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.【點睛】此題考查不等式恒成立問題、函數與方程的轉化思想,考查導數的運用,屬于較難題.18、(1)(2)三個零點【解析】

(1)由題意知恒成立,構造函數,對函數求導,求得函數最值,進而得到結果;(2)當時先對函數求導研究函數的單調性可得到函數有兩個極值點,再證,.【詳解】(1)由得,由題意知恒成立,即,設,,時,遞減,時,,遞增;故,即,故的取值范圍是.(2)當時,單調,無極值;當時,,一方面,,且在遞減,所以在區間有一個零點.另一方面,,設,則,從而在遞增,則,即,又在遞增,所以在區間有一個零點.因此,當時在和各有一個零點,將這兩個零點記為,,當時,即;當時,即;當時,即:從而在遞增,在遞減,在遞增;于是是函數的極大值點,是函數的極小值點.下面證明:,由得,即,由得,令,則,①當時,遞減,則,而,故;②當時,遞減,則,而,故;一方面,因為,又,且在遞增,所以在上有一個零點,即在上有一個零點.另一方面,根據得,則有:,又,且在遞增,故在上有一個零點,故在上有一個零點.又,故有三個零點.【點睛】本題考查函數的零點,導數的綜合應用.在研究函數零點時,有一種方法是把函數的零點轉化為方程的解,再把方程的解轉化為函數圖象的交點,特別是利用分離參數法轉化為動直線與函數圖象交點問題,這樣就可利用導數研究新函數的單調性與極值,從而得出函數的變化趨勢,得出結論.19、(1)(ⅰ)(ⅱ)分布表見解析;(2)理由見解析【解析】

(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,家長的排序有種等可能結果,利用列舉法求出其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,由此能求出他們在一輪游戲中,對四種食物排出的序號完全不同的概率.

(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,由此能求出X的分布列.

(2)假設家長對小孩的飲食習慣完全不了解,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為,這個結果發生的可能性很小,從而這位家長對小孩飲食習慣比較了解.【詳解】(1)(i)若家長對小孩子的飲食習慣完全不了解,則家長對小孩的排序是隨意猜測的,先考慮小孩的排序為xA,xB,xC,xD為1234的情況,家長的排序有=24種等可能結果,其中滿足“家長的排序與對應位置的數字完全不同”的情況有9種,分別為:2143,2341,2413,3142,3412,3421,4123,4312,4321,∴家長的排序與對應位置的數字完全不同的概率P=.基小孩對四種食物的排序是其他情況,只需將角標A,B,C,D按照小孩的順序調整即可,假設小孩的排序xA,xB,xC,xD為1423的情況,四種食物按1234的排列為ACDB,再研究yAyByCyD的情況即可,其實這樣處理后與第一種情況的計算結果是一致的,∴他們在一輪游戲中,對四種食物排出的序號完全不同的概率為.(ii)根據(i)的分析,同樣只考慮小孩排序為1234的情況,家長的排序一共有24種情況,列出所有情況,分別計算每種情況下的x的值,X的分布列如下表:X02468101214161820P(2)這位家長對小孩的飲食習慣比較了解.理由如下:假設家長對小孩的飲食習慣完全不了解,由(1)可知,在一輪游戲中,P(X<4)=P(X=0)+P(X=2)=,三輪游戲結果都滿足“X<4”的概率為()3=,這個結果發生的可能性很小,∴這位家長對小孩飲食習慣比較了解.【點睛】本題考查概率的求法,考查古典概型、排列組合、列舉法等基礎知識,考查運算求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論