河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷_第1頁
河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷_第2頁
河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷_第3頁
河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷_第4頁
河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省洛陽市第一中學2025屆下學期高三二模數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,則的虛部為()A. B. C. D.12.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-283.將函數的圖象先向右平移個單位長度,在把所得函數圖象的橫坐標變為原來的倍,縱坐標不變,得到函數的圖象,若函數在上沒有零點,則的取值范圍是()A. B.C. D.4.已知的共軛復數是,且(為虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或6.2020年是脫貧攻堅決戰決勝之年,某市為早日實現目標,現將甲、乙、丙、丁4名干部派遺到、、三個貧困縣扶貧,要求每個貧困縣至少分到一人,則甲被派遣到縣的分法有()A.6種 B.12種 C.24種 D.36種7.已知定義在上函數的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6748.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內到兩定點距離之比為常數的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.9.定義在R上的函數滿足,為的導函數,已知的圖象如圖所示,若兩個正數滿足,的取值范圍是()A. B. C. D.10.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.11.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.12.設向量,滿足,,,則的取值范圍是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數過定點________.14.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________15.已知函數若關于的不等式的解集為,則實數的所有可能值之和為_______.16.已知多項式滿足,則_________,__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,,設.(1)當時,求函數的單調區間;(2)設方程(其中為常數)的兩根分別為,,證明:.(注:是的導函數)18.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數,使得?若存在,求出的值;若不存在,請說明理由.19.(12分)分別為的內角的對邊.已知.(1)若,求;(2)已知,當的面積取得最大值時,求的周長.20.(12分)已知函數.(1)討論的單調性;(2)若函數在區間上的最小值為,求m的值.21.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.22.(10分)已知函數,.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先將,化簡轉化為,再得到下結論.【詳解】已知復數,所以,所以的虛部為-1.故選:C【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.2、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.3、A【解析】

根據y=Acos(ωx+φ)的圖象變換規律,求得g(x)的解析式,根據定義域求出的范圍,再利用余弦函數的圖象和性質,求得ω的取值范圍.【詳解】函數的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變為原來的倍(縱坐標不變),得到函數的圖象,∴周期,若函數在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.【點睛】本題考查函數y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數形結合思想,構建不等關系式,求解可得,屬于較難題.4、D【解析】

設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數在復平面內對應的點為,此點位于第四象限.故選D【點睛】本題主要考查了復數相等、復數表示的點知識,考查了方程思想,屬于基礎題.5、D【解析】

由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.6、B【解析】

分成甲單獨到縣和甲與另一人一同到縣兩種情況進行分類討論,由此求得甲被派遣到縣的分法數.【詳解】如果甲單獨到縣,則方法數有種.如果甲與另一人一同到縣,則方法數有種.故總的方法數有種.故選:B【點睛】本小題主要考查簡答排列組合的計算,屬于基礎題.7、B【解析】

由題知為奇函數,且可得函數的周期為3,分別求出知函數在一個周期內的和是0,利用函數周期性對所求式子進行化簡可得.【詳解】因為為奇函數,故;因為,故,可知函數的周期為3;在中,令,故,故函數在一個周期內的函數值和為0,故.故選:B.【點睛】本題考查函數奇偶性與周期性綜合問題.其解題思路:函數的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數值的自變量轉化到已知解析式的函數定義域內求解.8、A【解析】

根據平面內兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.9、C【解析】

先從函數單調性判斷的取值范圍,再通過題中所給的是正數這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數在區間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數單調性和不等式的基礎知識,屬于中檔題.10、C【解析】

根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養.11、D【解析】

根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.12、B【解析】

由模長公式求解即可.【詳解】,當時取等號,所以本題答案為B.【點睛】本題考查向量的數量積,考查模長公式,準確計算是關鍵,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

令,,與參數無關,即可得到定點.【詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:【點睛】此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節省解題時間.14、【解析】

根據題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數形結合思想,以及推理與運算能力,屬于基礎題.15、【解析】

由分段函數可得不滿足題意;時,,可得,即有,解方程可得,4,結合指數函數的圖象和二次函數的圖象即可得到所求和.【詳解】解:由函數,可得的增區間為,,時,,,時,,當關于的不等式的解集為,,可得不成立,時,時,不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個交點.綜上可得的所有值的和為1.故答案為:1.【點睛】本題考查分段函數的圖象和性質,考查不等式的解法,注意運用分類討論思想方法,考查化簡運算能力,屬于中檔題.16、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,72三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在上單調遞增,在上單調遞減.(2)見解析【解析】

(1)求出導函數,由確定增區間,由確定減區間;(2)求出含有參數的,再求出,由的兩根是,得,計算,代入后可得結論.【詳解】解:,函數的定義域為,.(1)當時,,由得,由得,故函數在上單調遞增,在上單調遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..【點睛】本題考查用導數研究函數的單調性,考查導數的運算、方程根的知識.在可導函數中一般由確定增區間,由確定減區間.18、(1),(1,2);(2)存在,【解析】

(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;(2)直線與拋物線方程聯立,利用根與系數的關系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數使得斜率之和為定值.【詳解】(1)由題意,直線變為2x+1-m(2y+1)=0,所以定點Q的坐標為拋物線的焦點坐標,由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點P坐標為(1,2)(2)設存在滿足條件的實數,點,聯立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數=滿足條件.【點睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯立直線方程與拋物線方程,應用一元二次方程根與系數的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.19、(1)(2)【解析】

(1)根據正弦定理,將,化角為邊,即可求出,再利用正弦定理即可求出;(2)根據,選擇,所以當的面積取得最大值時,最大,結合(1)中條件,即可求出最大時,對應的的值,再根據余弦定理求出邊,進而得到的周長.【詳解】(1)由,得,即.因為,所以.由,得.(2)因為,所以,當且僅當時,等號成立.因為的面積.所以當時,的面積取得最大值,此時,則,所以的周長為.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,涉及到基本不等式的應用,意在考查學生的轉化能力和數學運算能力.20、(1)見解析(2)【解析】

(1)先求導,再對m分類討論,求出的單調性;(2)對m分三種情況討論求函數在區間上的最小值即得解.【詳解】(1)若,當時,;當時.,所以在上單調遞增,在上單調遞減若.在R上單調遞增若,當時,;當時.,所以在上單調遞增,在上單調遞減(2)由(1)可知,當時,在上單調遞增,則.則不合題意當時,在上單調遞減,在上單調遞增.則,即又因為單調遞增,且,故綜上,【點睛】本題主要考查利用導數研究函數的單調性和最值,意在考查學生對這些知識的理解掌握水平.21、(1)(2).【解析】

(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是常考題型.22、(1);(2)【解析】

(1)對函數求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數,對函數求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論