




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆福建省福清市華僑中學(xué)高三3月聯(lián)考數(shù)學(xué)試題試卷(二)請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若復(fù)數(shù)(是虛數(shù)單位),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在三角形中,,,求()A. B. C. D.3.雙曲線x2a2A.y=±2x B.y=±3x4.已知函數(shù)是上的偶函數(shù),是的奇函數(shù),且,則的值為()A. B. C. D.5.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.6.博覽會(huì)安排了分別標(biāo)有序號(hào)為“1號(hào)”“2號(hào)”“3號(hào)”的三輛車,等可能隨機(jī)順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計(jì)兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號(hào)大于第一輛車的車序號(hào),就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號(hào)”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P27.已知雙曲線(,)的左、右焦點(diǎn)分別為,以(為坐標(biāo)原點(diǎn))為直徑的圓交雙曲線于兩點(diǎn),若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.8.三棱錐的各個(gè)頂點(diǎn)都在求的表面上,且是等邊三角形,底面,,,若點(diǎn)在線段上,且,則過點(diǎn)的平面截球所得截面的最小面積為()A. B. C. D.9.的展開式中各項(xiàng)系數(shù)的和為2,則該展開式中常數(shù)項(xiàng)為A.-40 B.-20 C.20 D.4010.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.67411.已知雙曲線的實(shí)軸長(zhǎng)為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是()A. B. C. D.12.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為6步和8步,問其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.14.已知點(diǎn)M是曲線y=2lnx+x2﹣3x上一動(dòng)點(diǎn),當(dāng)曲線在M處的切線斜率取得最小值時(shí),該切線的方程為_______.15.某外商計(jì)劃在個(gè)候選城市中投資個(gè)不同的項(xiàng)目,且在同一個(gè)城市投資的項(xiàng)目不超過個(gè),則該外商不同的投資方案有____種.16.設(shè)點(diǎn)P在函數(shù)的圖象上,點(diǎn)Q在函數(shù)的圖象上,則線段PQ長(zhǎng)度的最小值為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中國(guó),不僅是購(gòu)物,而且從共享單車到醫(yī)院掛號(hào)再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國(guó)人民大學(xué)和法國(guó)調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?(2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶中隨機(jī)抽取3位女性用戶,這3位用戶中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;(3)某商場(chǎng)為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5折.如果你打算用手機(jī)支付購(gòu)買某樣價(jià)值1200元的商品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.82818.(12分)在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中.若問題中的正整數(shù)存在,求的值;若不存在,說明理由.設(shè)正數(shù)等比數(shù)列的前項(xiàng)和為,是等差數(shù)列,__________,,,,是否存在正整數(shù),使得成立?19.(12分)的內(nèi)角的對(duì)邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.20.(12分)如圖,在四棱錐中,平面ABCD平面PAD,,,,,E是PD的中點(diǎn).證明:;設(shè),點(diǎn)M在線段PC上且異面直線BM與CE所成角的余弦值為,求二面角的余弦值.21.(12分)在直角坐標(biāo)系中,是過定點(diǎn)且傾斜角為的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為.(1)寫出直線的參數(shù)方程,并將曲線的方程化為直角坐標(biāo)方程;(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
將整理成的形式,得到復(fù)數(shù)所對(duì)應(yīng)的的點(diǎn),從而可選出所在象限.【詳解】解:,所以所對(duì)應(yīng)的點(diǎn)為在第一象限.故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的乘法運(yùn)算,考查了復(fù)數(shù)對(duì)應(yīng)的坐標(biāo).易錯(cuò)點(diǎn)是誤把當(dāng)成進(jìn)行計(jì)算.2、A【解析】
利用正弦定理邊角互化思想結(jié)合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點(diǎn)睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應(yīng)用,考查計(jì)算能力,屬于中等題.3、A【解析】分析:根據(jù)離心率得a,c關(guān)系,進(jìn)而得a,b關(guān)系,再根據(jù)雙曲線方程求漸近線方程,得結(jié)果.詳解:∵e=因?yàn)闈u近線方程為y=±bax點(diǎn)睛:已知雙曲線方程x2a24、B【解析】
根據(jù)函數(shù)的奇偶性及題設(shè)中關(guān)于與關(guān)系,轉(zhuǎn)換成關(guān)于的關(guān)系式,通過變形求解出的周期,進(jìn)而算出.【詳解】為上的奇函數(shù),,而函數(shù)是上的偶函數(shù),,,故為周期函數(shù),且周期為故選:B【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性,函數(shù)的周期性的應(yīng)用,屬于基礎(chǔ)題.5、A【解析】
根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)椋裕忠驗(yàn)椋裕裕越孛鎴A的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計(jì)算.6、C【解析】
將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.【點(diǎn)睛】本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個(gè)數(shù),屬于基礎(chǔ)題.7、D【解析】
連接,可得,在中,由余弦定理得,結(jié)合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據(jù)雙曲線的定義,得,所以雙曲線的離心率故選:D【點(diǎn)睛】本題考查了雙曲線的性質(zhì)及雙曲線的離心率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點(diǎn)D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點(diǎn)E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點(diǎn)D的平面截球O所得截面圓的最小半徑為所以過點(diǎn)D的平面截球O所得截面的最小面積為故選:A【點(diǎn)睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.9、D【解析】令x=1得a=1.故原式=.的通項(xiàng),由5-2r=1得r=2,對(duì)應(yīng)的常數(shù)項(xiàng)=80,由5-2r=-1得r=3,對(duì)應(yīng)的常數(shù)項(xiàng)=-40,故所求的常數(shù)項(xiàng)為40,選D解析2.用組合提取法,把原式看做6個(gè)因式相乘,若第1個(gè)括號(hào)提出x,從余下的5個(gè)括號(hào)中選2個(gè)提出x,選3個(gè)提出;若第1個(gè)括號(hào)提出,從余下的括號(hào)中選2個(gè)提出,選3個(gè)提出x.故常數(shù)項(xiàng)==-40+80=4010、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)椋剩芍瘮?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.11、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,,所以;當(dāng)軸時(shí),,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.12、C【解析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【詳解】由題意,直角三角形的斜邊長(zhǎng)為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【點(diǎn)睛】本題主要考查了面積比的幾何概型的概率的計(jì)算問題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型.14、【解析】
先求導(dǎo)數(shù)可得切線斜率,利用基本不等式可得切點(diǎn)橫坐標(biāo),從而可得切線方程.【詳解】,,=1時(shí)有最小值1,此時(shí)M(1,﹣2),故切線方程為:,即.故答案為:.【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的幾何意義,切點(diǎn)處的導(dǎo)數(shù)值等于切線的斜率是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、60【解析】試題分析:每個(gè)城市投資1個(gè)項(xiàng)目有種,有一個(gè)城市投資2個(gè)有種,投資方案共種.考點(diǎn):排列組合.16、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對(duì)稱,則點(diǎn)到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因?yàn)榕c互為反函數(shù),則圖象關(guān)于對(duì)稱,設(shè)點(diǎn)為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時(shí),,即單調(diào)遞減;當(dāng)時(shí),,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點(diǎn)睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,99%;(2),;(3)第二種優(yōu)惠方案更劃算.【解析】
(1)根據(jù)已知數(shù)據(jù)得出列聯(lián)表,再根據(jù)獨(dú)立性檢驗(yàn)得出結(jié)論;(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,知服從二項(xiàng)分布,即,可求得其期望和方差;(3)若選方案一,則需付款元,若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,求出實(shí)際付款的期望,再比較兩個(gè)方案中的付款的金額的大小,可得出選擇的方案.【詳解】(1)由已知得出聯(lián)列表:,所以,有99%的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān);(2)有數(shù)據(jù)可知,女性中“手機(jī)支付族”的概率為,,;(3)若選方案一,則需付款元若選方案二,設(shè)實(shí)際付款元,,則的取值為1200,1080,1020,,,,選擇第二種優(yōu)惠方案更劃算【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn),二項(xiàng)分布的期望和方差,以及由期望值確定決策方案,屬于中檔題.18、見解析【解析】
根據(jù)等差數(shù)列性質(zhì)及、,可求得等差數(shù)列的通項(xiàng)公式,由即可求得的值;根據(jù)等式,變形可得,分別討論取①②③中的一個(gè),結(jié)合等比數(shù)列通項(xiàng)公式代入化簡(jiǎn),檢驗(yàn)是否存在正整數(shù)的值即可.【詳解】∵在等差數(shù)列中,,∴,∴公差,∴,∴,若存在正整數(shù),使得成立,即成立,設(shè)正數(shù)等比數(shù)列的公比為的公比為,若選①,∵,∴,∴,∴,∴當(dāng)時(shí),滿足成立.若選②,∵,∴,∴,∴,∴方程無正整數(shù)解,∴不存在正整數(shù)使得成立.若選③,∵,∴,∴,∴,∴解得或(舍去),∴,∴當(dāng)時(shí),滿足成立.【點(diǎn)睛】本題考查了等差數(shù)列通項(xiàng)公式的求法,等比數(shù)列通項(xiàng)公式及前n項(xiàng)和公式的應(yīng)用,遞推公式的簡(jiǎn)單應(yīng)用,補(bǔ)充條件后求參數(shù)的值,屬于中檔題.19、(1);(2).【解析】
(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡(jiǎn)邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時(shí)取等號(hào))即三角形面積的最大值為:【點(diǎn)睛】本題考查解三角形的相關(guān)知識(shí),涉及到正弦定理化簡(jiǎn)邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識(shí),屬于常考題型.20、(1)見解析;(2)【解析】
(1)由平面平面的性質(zhì)定理得平面,.在中,由勾股定理得,平面,即可得;(2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,由空間向量法和異面直線與所成角的余弦值為,得點(diǎn)M的坐標(biāo),從而求出二面角的余弦值.【詳解】(1)平面平面,平面平面=,,所以.由面面垂直的性質(zhì)定理得平面,,在中,,,由正弦定理可得:,,即,平面,.(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè),則,,得,,而,設(shè)平面的法向量為,由可得:,令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國(guó)羥基乙酸行業(yè)運(yùn)營(yíng)格局與應(yīng)用趨勢(shì)研究報(bào)告
- 2025至2030中國(guó)綠植租賃行業(yè)發(fā)展態(tài)勢(shì)及投資策略研究報(bào)告
- 2025至2030中國(guó)硅基薄膜太陽(yáng)能電池行業(yè)競(jìng)爭(zhēng)格局及投資動(dòng)態(tài)研究報(bào)告
- 2025至2030中國(guó)電子注射器行業(yè)應(yīng)用前景與發(fā)展態(tài)勢(shì)展望報(bào)告
- 2025至2030中國(guó)煤電行業(yè)前景規(guī)劃建議與運(yùn)行走勢(shì)研究報(bào)告
- 2025至2030中國(guó)焦亞硫酸鈉行業(yè)供需態(tài)勢(shì)與發(fā)展方向研究報(bào)告
- 2025至2030中國(guó)泡罩包裝機(jī)市場(chǎng)運(yùn)營(yíng)動(dòng)態(tài)與營(yíng)銷發(fā)展趨勢(shì)研究報(bào)告
- 基于2025年高校創(chuàng)新創(chuàng)業(yè)教育的課程體系與創(chuàng)新創(chuàng)業(yè)教育人才培養(yǎng)研究報(bào)告
- 2025至2030中國(guó)氮化硅AMB覆銅板行業(yè)現(xiàn)狀調(diào)查與發(fā)展前景研究報(bào)告
- 2025至2030中國(guó)智能集成式馬桶行業(yè)競(jìng)爭(zhēng)狀況與銷售趨勢(shì)研究報(bào)告
- 企業(yè)環(huán)境應(yīng)急知識(shí)培訓(xùn)
- 量販?zhǔn)終TV消防應(yīng)急疏散預(yù)案
- 王者榮耀VS英雄聯(lián)盟:MOBA游戲的對(duì)決
- 新加坡雇傭合同模板
- 林業(yè)專業(yè)知識(shí)考試試題及答案
- 高三英語(yǔ)語(yǔ)法填空專項(xiàng)訓(xùn)練100(附答案)及解析
- 《第一單元 我是信息社會(huì)的“原住民”4 鼠標(biāo)操作有方法》教學(xué)設(shè)計(jì)-2024-2025學(xué)年閩教版信息技術(shù)三年級(jí)上冊(cè)
- 【天潤(rùn)乳業(yè)公司應(yīng)收賬款狀況及完善對(duì)策(附問卷)14000字】
- 焊線機(jī)技術(shù)員自學(xué)書
- 2024年共青團(tuán)入團(tuán)積極分子考試題庫(kù)(含答案)
- 強(qiáng)化學(xué)習(xí) 課件 第1章 強(qiáng)化學(xué)習(xí)概述
評(píng)論
0/150
提交評(píng)論