




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市晉元中學高中畢業班第二次質量檢查數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數滿足,則()A. B. C. D.2.從集合中隨機選取一個數記為,從集合中隨機選取一個數記為,則在方程表示雙曲線的條件下,方程表示焦點在軸上的雙曲線的概率為()A. B. C. D.3.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)為()A. B.6 C. D.4.關于函數,有下列三個結論:①是的一個周期;②在上單調遞增;③的值域為.則上述結論中,正確的個數為()A. B. C. D.5.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.6.若,則,,,的大小關系為()A. B.C. D.7.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有8.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.9.已知,則()A. B. C. D.10.已知集合A={x|x<1},B={x|},則A. B.C. D.11.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.12.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數與的圖象上存在關于軸的對稱點,則實數的取值范圍為______.14.在矩形ABCD中,,,點E,F分別為BC,CD邊上動點,且滿足,則的最大值為________.15.圓關于直線的對稱圓的方程為_____.16.已知實數滿約束條件,則的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,不等式恒成立.(1)求證:(2)求證:.18.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態度的人數為X,求X的分布列及數學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63519.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.20.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當PA的長為何值時,AC與平面PCD所成的角為?21.(12分)已知函數()在定義域內有兩個不同的極值點.(1)求實數的取值范圍;(2)若有兩個不同的極值點,,且,若不等式恒成立.求正實數的取值范圍.22.(10分)在直角坐標系中,曲線的參數方程為(為參數),坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若曲線、交于、兩點,是曲線上的動點,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
化簡得到,,再計算復數模得到答案.【詳解】,故,故,.故選:.【點睛】本題考查了復數的化簡,共軛復數,復數模,意在考查學生的計算能力.2、A【解析】
設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,分別計算出,再利用公式計算即可.【詳解】設事件A為“方程表示雙曲線”,事件B為“方程表示焦點在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點睛】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.3、D【解析】
根據幾何體的三視圖,該幾何體是由正方體去掉三棱錐得到,根據正方體和三棱錐的體積公式可求解.【詳解】如圖,該幾何體為正方體去掉三棱錐,所以該幾何體的體積為:,故選:D【點睛】本題主要考查了空間幾何體的三視圖以及體積的求法,考查了空間想象力,屬于中檔題.4、B【解析】
利用三角函數的性質,逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調遞增,②錯誤;③因為,所以是偶函數,又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調遞增,所以,的值域為,③錯誤;綜上,正確的個數只有一個,故選B.【點睛】本題主要考查三角函數的性質應用.5、C【解析】
根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.6、D【解析】因為,所以,因為,,所以,.綜上;故選D.7、B【解析】
根據函數對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.8、B【解析】
由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.9、C【解析】
利用誘導公式得,,再利用倍角公式,即可得答案.【詳解】由可得,∴,∴.故選:C.【點睛】本題考查誘導公式、倍角公式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意三角函數的符號.10、A【解析】∵集合∴∵集合∴,故選A11、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.12、B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求得與關于軸對稱的函數,將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數的取值范圍.【詳解】因為關于軸對稱的函數為,因為函數與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數與的圖象上存在關于軸的對稱點,綜上可得,實數的取值范圍為.故答案為:【點睛】本小題主要考查利用導數求解函數的零點以及對稱性,函數與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.14、【解析】
利用平面直角坐標系,設出點E,F的坐標,由可得,利用數量積運算求得,再利用線性規劃的知識求出的最大值.【詳解】建立平面直角坐標系,如圖(1)所示:設,,,即,又,令,其中,畫出圖形,如圖(2)所示:當直線經過點時,取得最大值.故答案為:【點睛】本題考查了向量數量積的坐標運算、簡單的線性規劃問題,解題的關鍵是建立恰當的坐標系,屬于基礎題.15、【解析】
求出圓心關于直線的對稱點,即可得解.【詳解】的圓心為,關于對稱點設為,則有:,解得,所以對稱后的圓心為,故所求圓的方程為.故答案為:【點睛】此題考查求圓關于直線的對稱圓方程,關鍵在于準確求出圓心關于直線的對稱點坐標.16、8【解析】
畫出可行域和目標函數,根據平移計算得到答案.【詳解】根據約束條件,畫出可行域,圖中陰影部分為可行域.又目標函數表示直線在軸上的截距,由圖可知當經過點時截距最大,故的最大值為8.故答案為:.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)先根據絕對值不等式求得的最大值,從而得到,再利用基本不等式進行證明;(2)利用基本不等式變形得,兩邊開平方得到新的不等式,利用同理可得另外兩個不等式,再進行不等式相加,即可得答案.【詳解】(1)∵,∴.∵,,,∴,∴,∴.(2)∵,,即兩邊開平方得.同理可得,.三式相加,得.【點睛】本題考查絕對值不等式、應用基本不等式證明不等式,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和推理論證能力.18、(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳見解析.【解析】
(1)根據表格及同意父母生“二孩”占60%可求出,,根據公式計算結果即可確定有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)由題意可知X服從二項分布,利用公式計算概率及期望即可.【詳解】(1)因為100人中同意父母生“二孩”占60%,所以,文(2)由列聯表可得而所以有97.5%的把握認為是否同意父母生“二孩”與“性別”有關(2)①由題知持“同意”態度的學生的頻率為,即從學生中任意抽取到一名持“同意”態度的學生的概率為.由于總體容量很大,故X服從二項分布,即從而X的分布列為X01234X的數學期望為【點睛】本題主要考查了相關性檢驗、二項分布,屬于中檔題.19、(1)見解析;(2)見解析【解析】
(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質等,解題時要認真審題,注意空間思維能力的培養,中檔題.20、(1)證明見解析;(2)當時,AC與平面PCD所成的角為.【解析】
(1)連接交于,由相似三角形可得,結合得出,故而平面;(2)過作,可證平面,根據計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.21、(1);(2).【解析】
(1)求導得到有兩個不相等實根,令,計算函數單調區間得到值域,得到答案.(2),是方程的兩根,故,化簡得到,設函數,討論范圍,計算最值得到答案.【詳解】(1)由題可知有兩個不相等的實根,即:有兩個不相等實根,令,,,,;,,故在上單增,在上單減,∴.又,時,;時,,∴,即.(2)由(1)知,,是方程的兩根,∴,則因為在單減,∴,又,∴即,兩邊取對數,并整理得:對恒成立,設,,,當時,對恒成立,∴在上單增,故恒成立,符合題意;當時,,時,∴在上單減,,不符合題意.綜上,.【點睛】本題考查了根據極值點求參數,恒成立問題,意在考查學生的計算能力和綜合應用能力.22、(1),;(2).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中介雇傭合同樣本
- 制冷設備銷售合同樣本
- 個人屋頂維修合同樣本
- 公路購銷合同樣本
- 農村車位購買合同樣本
- 公司設立新公司合同標準文本
- 制作樣冊合同樣本
- 出售木地板合同樣本
- 會員合同樣本修車行
- 出資返利合同樣本
- 統編版高二歷史選擇性必修2《第13課現代交通運輸的新變化》課件
- 集裝箱采購投標方案(技術方案)
- 下白雨合唱簡譜
- 專家工作站日常管理制度
- 2024屆江蘇省宿遷市泗陽縣中考英語四模試卷含答案
- 脂肪肝患者的自我管理宣教
- 弱電系統工程安全及文明施工措施
- 施工進度計劃及保證措施5篇
- 2023年拉薩市“一考三評”備考試題庫匯總-下(多選、判斷題部分)
- 籃球賽計分表模板
- GA/T 2034-2023法庭科學疑似毒品中咖啡因檢驗氣相色譜和氣相色譜-質譜法
評論
0/150
提交評論