福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題_第1頁
福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題_第2頁
福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題_第3頁
福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題_第4頁
福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省泉州市第十六中學2025年高中畢業班高三第二次調研測試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若點(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或2.已知是等差數列的前項和,,,則()A.85 B. C.35 D.3.已知實數集,集合,集合,則()A. B. C. D.4.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.5.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.6.下列函數中,值域為R且為奇函數的是()A. B. C. D.7.已知函數,為的零點,為圖象的對稱軸,且在區間上單調,則的最大值是()A. B. C. D.8.若函數有兩個極值點,則實數的取值范圍是()A. B. C. D.9.已知,則()A.2 B. C. D.310.將一塊邊長為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.1211.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.12.記集合和集合表示的平面區域分別是和,若在區域內任取一點,則該點落在區域的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若實數滿足約束條件,設的最大值與最小值分別為,則_____.14.六位同學坐在一排,現讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數字回答).15.已知函數為奇函數,,且與圖象的交點為,,…,,則______.16.在的二項展開式中,所有項的系數的和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列18.(12分)已知函數.(Ⅰ)求在點處的切線方程;(Ⅱ)求證:在上存在唯一的極大值;(Ⅲ)直接寫出函數在上的零點個數.19.(12分)選修4-4:坐標系與參數方程:在平面直角坐標系中,曲線:(為參數),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.20.(12分)已知等差數列{an}的各項均為正數,Sn為等差數列{an}的前n項和,.(1)求數列{an}的通項an;(2)設bn=an?3n,求數列{bn}的前n項和Tn.21.(12分)已知函數.(1)解不等式;(2)若函數最小值為,且,求的最小值.22.(10分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點睛】(1)本題主要考查點到直線的距離公式,意在考查學生對該知識的掌握水平和計算推理能力.(2)點到直線的距離.2.B【解析】

將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數列通項公式的基本量計算,考查等差數列前項和的計算,屬于基礎題.3.A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.4.B【解析】

分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.5.B【解析】

由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數形結合思想與計算能力,屬于中檔題.6.C【解析】

依次判斷函數的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數,排除;B.,值域為,奇函數,排除;C.,值域為,奇函數,滿足;D.,值域為,非奇非偶函數,排除;故選:.【點睛】本題考查了函數的值域和奇偶性,意在考查學生對于函數知識的綜合應用.7.B【解析】

由題意可得,且,故有①,再根據,求得②,由①②可得的最大值,檢驗的這個值滿足條件.【詳解】解:函數,,為的零點,為圖象的對稱軸,,且,、,,即為奇數①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【點睛】本題主要考查正弦函數的圖象的特征,正弦函數的周期性以及它的圖象的對稱性,屬于中檔題.8.A【解析】試題分析:由題意得有兩個不相等的實數根,所以必有解,則,且,∴.考點:利用導數研究函數極值點【方法點睛】函數極值問題的常見類型及解題策略(1)知圖判斷函數極值的情況.先找導數為0的點,再判斷導數為0的點的左、右兩側的導數符號.(2)已知函數求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側的符號―→下結論.(3)已知極值求參數.若函數f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側的導數值符號相反.9.A【解析】

利用分段函數的性質逐步求解即可得答案.【詳解】,;;故選:.【點睛】本題考查了函數值的求法,考查對數的運算和對數函數的性質,是基礎題,解題時注意函數性質的合理應用.10.D【解析】

推導出,且,,,設中點為,則平面,由此能表示出該容器的體積,從而求出參數的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設中點為,則平面,∴,∴,解得.故選:D【點睛】本題考查三視圖和錐體的體積計算公式的應用,屬于中檔題.11.B【解析】

間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據分步乘法計數原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據分步計數原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.12.C【解析】

據題意可知,是與面積有關的幾何概率,要求落在區域內的概率,只要求、所表示區域的面積,然后代入概率公式,計算即可得答案.【詳解】根據題意可得集合所表示的區域即為如圖所表示:的圓及內部的平面區域,面積為,集合,,表示的平面區域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區域的面積.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

畫出可行域,平移基準直線到可行域邊界位置,由此求得最大值以及最小值,進而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當直線過點時,取得最大值7;過點時,取得最小值2,所以.【點睛】本小題主要考查利用線性規劃求線性目標函數的最值.這種類型題目的主要思路是:首先根據題目所給的約束條件,畫出可行域;其次是求得線性目標函數的基準函數;接著畫出基準函數對應的基準直線;然后通過平移基準直線到可行域邊界的位置;最后求出所求的最值.屬于基礎題.14.135【解析】

根據題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.15.18【解析】

由題意得函數f(x)與g(x)的圖像都關于點對稱,結合函數的對稱性進行求解即可.【詳解】函數為奇函數,函數關于點對稱,,函數關于點對稱,所以兩個函數圖象的交點也關于點(1,2)對稱,與圖像的交點為,,…,,兩兩關于點對稱,.故答案為:18【點睛】本題考查了函數對稱性的應用,結合函數奇偶性以及分式函數的性質求出函數的對稱性是解決本題的關鍵,屬于中檔題.16.1【解析】

設,令,的值即為所有項的系數之和。【詳解】設,令,所有項的系數的和為。【點睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區分。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)an=(2)Tn【解析】

(1)利用an與Sn的遞推關系可以an的通項公式;P點代入直線方程得b【詳解】(1)由an+1=2S兩式相減得an+1-a又a2=2S1+1=3,所以a由點P(bn,bn+1則數列{bn(2)因為cn=b則13兩式相減得:23所以Tn【點睛】用遞推關系an=Sn-18.(Ⅰ);(Ⅱ)證明見解析;(Ⅲ)函數在有3個零點.【解析】

(Ⅰ)求出導數,寫出切線方程;(Ⅱ)二次求導,判斷單調遞減,結合零點存在性定理,判斷即可;(Ⅲ),數形結合得出結論.【詳解】解:(Ⅰ),,,故在點,處的切線方程為,即;(Ⅱ)證明:,,,故在遞減,又,,由零點存在性定理,存在唯一一個零點,,當時,遞增;當時,遞減,故在只有唯一的一個極大值;(Ⅲ)函數在有3個零點.【點睛】本題主要考查利用導數求切線方程,考查零點存在性定理的應用,關鍵是能夠通過導函數的單調性和零點存在定理確定導函數的零點個數,進而確定函數的單調性,屬于難題.19.(1),;(2),,.【解析】

(1)把曲線的參數方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標為,,.【點睛】本題考查圓的參數方程和普通方程的轉化、直線極坐標方程和直角坐標方程的轉化,消去參數方程中的參數,就可把參數方程化為普通方程,消去參數的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標方程化為直角坐標方程,只要將和換成和即可.20.(1).(2)【解析】

(1)先設等差數列{an}的公差為d(d>0),然后根據等差數列的通項公式及已知條件可列出關于d的方程,解出d的值,即可得到數列{an}的通項an;(2)先根據第(1)題的結果計算出數列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設等差數列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數學運算能力.屬于中檔題.21.(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據“的代換”的方法,結合基本不等式,求得的最小值.【詳解】(1)當時,,即,無解;當時,,即,得;當時,,即,得.故

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論