




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省宜昌市西陵區宜昌二中2023年高三下學期高考模擬考試數學試題(文史類)試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.2.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數表選取5個個體,選取方法是隨機數表第1行的第5列和第6列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.013.一個盒子里有4個分別標有號碼為1,2,3,4的小球,每次取出一個,記下它的標號后再放回盒子中,共取3次,則取得小球標號最大值是4的取法有()A.17種 B.27種 C.37種 D.47種4.已知函數,,的零點分別為,,,則()A. B.C. D.5.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有6.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.7.設集合,則()A. B.C. D.8.若復數滿足,則()A. B. C.2 D.9.已知向量,(其中為實數),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.11.設復數滿足,則()A.1 B.-1 C. D.12.設且,則下列不等式成立的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.14.正四面體的各個點在平面同側,各點到平面的距離分別為1,2,3,4,則正四面體的棱長為__________.15.設實數,若函數的最大值為,則實數的最大值為______.16.若滿足,則目標函數的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求函數的最大值.18.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.19.(12分)已知等差數列滿足,公差,等比數列滿足,,.求數列,的通項公式;若數列滿足,求的前項和.20.(12分)如圖,是正方形,點在以為直徑的半圓弧上(不與,重合),為線段的中點,現將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時,求二面角的余弦值.21.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數方程為其中,為參數,為常數.(1)寫出與的直角坐標方程;(2)在什么范圍內取值時,與有交點.22.(10分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
如圖所示,過分別作于,于,利用和,聯立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.2.D【解析】從第一行的第5列和第6列起由左向右讀數劃去大于20的數分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數表法,考查學習能力和運用能力.3.C【解析】
由于是放回抽取,故每次的情況有4種,共有64種;先找到最大值不是4的情況,即三次取出標號均不為4的球的情況,進而求解.【詳解】所有可能的情況有種,其中最大值不是4的情況有種,所以取得小球標號最大值是4的取法有種,故選:C【點睛】本題考查古典概型,考查補集思想的應用,屬于基礎題.4.C【解析】
轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.5.C【解析】
根據等差數列和等比數列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【點睛】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.6.B【解析】
根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.7.B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎題.8.D【解析】
把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.9.A【解析】
結合向量垂直的坐標表示,將兩個條件相互推導,根據能否推導的情況判斷出充分、必要條件.【詳解】由,則,所以;而當,則,解得或.所以“”是“”的充分不必要條件.故選:A【點睛】本小題考查平面向量的運算,向量垂直,充要條件等基礎知識;考查運算求解能力,推理論證能力,應用意識.10.B【解析】
先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.11.B【解析】
利用復數的四則運算即可求解.【詳解】由.故選:B【點睛】本題考查了復數的四則運算,需掌握復數的運算法則,屬于基礎題.12.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.14.【解析】
不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,根據題意F為中點,E為AB的三等分點(靠近點A),設棱長為a,求得,再用余弦定理求得:,從而求得,再根據頂點A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設點A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個單位,與正四面體相交,過點D,與AB,AC分別相交于點E,F,如圖所示:由題意得:F為中點,E為AB的三等分點(靠近點A),設棱長為a,,頂點D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點A到面EDF的距離為,所以,因為,所以,解得,故答案為:【點睛】本題主要考查幾何體的切割問題以及等體積法的應用,還考查了轉化化歸的思想和空間想象,運算求解的能力,屬于難題,15.【解析】
根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16.-1【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數得答案.【詳解】由約束條件作出可行域如圖,化目標函數為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.【解析】
試題分析:由柯西不等式得試題解析:因為,所以.等號當且僅當,即時成立.所以的最大值為.考點:柯西不等式求最值18.A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.19.,;.【解析】
由,公差,有,,成等比數列,所以,解得.進而求出數列,的通項公式;當時,由,所以,當時,由,,可得,進而求出前項和.【詳解】解:由題意知,,公差,有1,,成等比數列,所以,解得.所以數列的通項公式.數列的公比,其通項公式.當時,由,所以.當時,由,,兩式相減得,所以.故所以的前項和,.又時,,也符合上式,故.【點睛】本題主要考查等差數列和等比數列的概念,通項公式,前項和公式的應用等基礎知識;考查運算求解能力,方程思想,分類討論思想,應用意識,屬于中檔題.20.(1)見解析(2)【解析】
(1)利用面面垂直的性質定理證得平面,由此證得,根據圓的幾何性質證得,由此證得平面.(2)判斷出三棱錐的體積最大時點的位置.建立空間直角坐標系,通過平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)證明:因為平面平面是正方形,所以平面.因為平面,所以.因為點在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當點位于的中點時,的面積最大,三棱錐的體積也最大.不妨設,記中點為,以為原點,分別以的方向為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,設平面的法向量為,則令,得.設平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21.(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉化、參數方程與普通方程的轉化、直線與圓的位置關系的判斷,屬于基礎題.22.(1)見解析;(2).【解析】
(1)取的中點,連接、,連接,證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;(2)以點為坐標原點,、、所在直線分別為、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 深入了解專利代理人考試試題及答案
- 育嬰師情感溝通與親子聯系試題及答案
- 系統規劃與管理師考試重點評估試題及答案
- 自我防護措施在臨床中的必要性試題及答案
- 網絡規劃設計師復習規劃設計試題及答案
- 編程語言構造與使用方法試題及答案
- 激光設備應用案例試題及答案
- 2025年河南省安全員A證考試題庫附答案
- 衛生管理相關證書考試試題及答案解析
- 育嬰師心理支持技巧試題及答案
- 2024安徽省徽商集團有限公司招聘若干人筆試參考題庫附帶答案詳解
- 2025年鄭州鐵路職業技術學院單招職業傾向性測試題庫必考題
- 2024-2025學年人教版七年級生物下冊知識點總結
- 聲屏障行業跨境出海戰略研究報告
- 2025年安陽職業技術學院高職單招語文2019-2024歷年真題考點試卷含答案解析
- 《4?15 第十個全民國家安全教育日》知識宣講
- 事業單位人力資源管理績效考核難題與對策分析
- 院內VTE防控課件
- 汽車智能系統知識
- 2025年中鐵特貨物流股份有限公司招聘(75人)筆試參考題庫附帶答案詳解
- 第8課 數據需要保護(教案)2023-2024學年四年級下冊信息技術浙教版
評論
0/150
提交評論