2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題_第1頁
2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題_第2頁
2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題_第3頁
2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題_第4頁
2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河北省行唐啟明中學高三下學期第一次模擬考試(數學試題理)試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知復數z,則復數z的虛部為()A. B. C.i D.i3.已知角的終邊經過點,則A. B.C. D.4.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.5.“”是“函數的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖所示,正方體的棱,的中點分別為,,則直線與平面所成角的正弦值為()A. B. C. D.7.執行下面的程序框圖,則輸出的值為()A. B. C. D.8.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數組成的—個階方陣,其各行各列及兩條對角線所含的個數之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.459.已知三棱柱的所有棱長均相等,側棱平面,過作平面與平行,設平面與平面的交線為,記直線與直線所成銳角分別為,則這三個角的大小關系為()A. B.C. D.10.設,若函數在區間上有三個零點,則實數的取值范圍是()A. B. C. D.11.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B.C. D.12.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.14.若實數x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數15.若x,y滿足,且y≥?1,則3x+y的最大值_____16.已知拋物線的對稱軸與準線的交點為,直線與交于,兩點,若,則實數__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若正數、滿足,求證:.18.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.19.(12分)已知函數,將的圖象向左移個單位,得到函數的圖象.(1)若,求的單調區間;(2)若,的一條對稱軸是,求在的值域.20.(12分)已知不等式的解集為.(1)求實數的值;(2)已知存在實數使得恒成立,求實數的最大值.21.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.22.(10分)已知函數.(1)解不等式;(2)記函數的最小值為,正實數、滿足,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.2.B【解析】

利用復數的運算法則、虛部的定義即可得出【詳解】,則復數z的虛部為.故選:B.【點睛】本題考查了復數的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎題.3.D【解析】因為角的終邊經過點,所以,則,即.故選D.4.D【解析】

根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.5.A【解析】

先求解函數的圖象關于直線對稱的等價條件,得到,分析即得解.【詳解】若函數的圖象關于直線對稱,則,解得,故“”是“函數的圖象關于直線對稱”的充分不必要條件.故選:A【點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數學運算的能力,屬于基礎題.6.C【解析】

以D為原點,DA,DC,DD1分別為軸,建立空間直角坐標系,由向量法求出直線EF與平面AA1D1D所成角的正弦值.【詳解】以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設正方體ABCD﹣A1B1C1D1的棱長為2,則,,,取平面的法向量為,設直線EF與平面AA1D1D所成角為θ,則sinθ=|,直線與平面所成角的正弦值為.故選C.【點睛】本題考查了線面角的正弦值的求法,也考查數形結合思想和向量法的應用,屬于中檔題.7.D【解析】

根據框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,

,,,,,結束循環,故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環結構,條件分支結構,屬于中檔題.8.B【解析】

計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數列前項和公式,屬于基礎題.9.B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設為的中點,為的中點,由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補角,分別為,設三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點睛】本題主要考查了空間中兩直線所成角的計算,考查了學生的作圖,用圖能力,體現了學生直觀想象的核心素養.10.D【解析】令,可得.在坐標系內畫出函數的圖象(如圖所示).當時,.由得.設過原點的直線與函數的圖象切于點,則有,解得.所以當直線與函數的圖象切時.又當直線經過點時,有,解得.結合圖象可得當直線與函數的圖象有3個交點時,實數的取值范圍是.即函數在區間上有三個零點時,實數的取值范圍是.選D.點睛:已知函數零點的個數(方程根的個數)求參數值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解,對于一些比較復雜的函數的零點問題常用此方法求解.11.B【解析】

由題意首先確定幾何體的空間結構特征,然后結合空間結構特征即可求得其表面積.【詳解】由三視圖可知,該幾何體為邊長為正方體挖去一個以為球心以為半徑球體的,如圖,故其表面積為,故選:B.【點睛】(1)以三視圖為載體考查幾何體的表面積,關鍵是能夠對給出的三視圖進行恰當的分析,從三視圖中發現幾何體中各元素間的位置關系及數量關系.(2)多面體的表面積是各個面的面積之和;組合體的表面積應注意重合部分的處理.(3)圓柱、圓錐、圓臺的側面是曲面,計算側面積時需要將這個曲面展為平面圖形計算,而表面積是側面積與底面圓的面積之和.12.A【解析】

根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

取的中點,設等邊三角形的中心為,連接.根據等邊三角形的性質可求得,,由等腰直角三角形的性質,得,根據面面垂直的性質得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.14.12【解析】

畫出約束條件的可行域,求出最優解,即可求解目標函數的最大值.【詳解】根據約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規劃的簡單應用,屬于基礎題.15.5.【解析】

由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數得答案.【詳解】由題意作出可行域如圖陰影部分所示.設,當直線經過點時,取最大值5.故答案為:5【點睛】本題考查簡單的線性規劃,考查數形結合的解題思想方法,是中檔題.16.【解析】

由于直線過拋物線的焦點,因此過,分別作的準線的垂線,垂足分別為,,由拋物線的定義及平行線性質可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對稱性,問題應該有兩解.【詳解】直線過拋物線的焦點,,過,分別作的準線的垂線,垂足分別為,,由拋物線的定義知,.因為,所以.因為,所以,從而.設直線的傾斜角為,不妨設,如圖,則,,同理,則,解得,,由對稱性還有滿足題意.,綜上,.【點睛】本題考查拋物線的性質,考查拋物線的焦點弦問題,掌握拋物線的定義,把拋物線上點到焦點距離與它到距離聯系起來是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】

(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得最值.【詳解】(1)等價于(Ⅰ)或(Ⅱ)或(Ⅲ)由(Ⅰ)得:由(Ⅱ)得:由(Ⅲ)得:.原不等式的解集為;(2),,,,,當且僅當,即時取等號,,當且僅當即時取等號,.【點睛】本題考查分類討論解絕對值不等式,考查三角不等式的應用及基本不等式的應用,是一道中檔題.18.(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】

(Ⅰ)連結,,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設,計算,,根據垂直關系得到答案.【詳解】(Ⅰ)連結,,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設平面法向量為,則,連結,可得,又所以,平面,平面的法向量,設二面角的平面角為,則.(Ⅲ)線段上存在點使得,設,,,,所以點為線段的中點.【點睛】本題考查了線面平行,二面角,根據垂直關系確定位置,意在考查學生的計算能力和空間想象能力.19.(1)增區間為,減區間為;(2).【解析】

(1)由題意利用三角函數圖象變換規律求得的解析式,然后利用余弦函數的單調性,得出結論;(2)由題意利用余弦函數的圖象的對稱性求得,再根據余弦函數的定義域和值域,得出結論.【詳解】由題意得(1)向左平移個單位得到,增區間:解不等式,解得,減區間:解不等式,解得.綜上可得,的單調增區間為,減區間為;(2)由題易知,,因為的一條對稱軸是,所以,,解得,.又因為,所以,即.因為,所以,則,所以在的值域是.【點睛】本題主要考查三角函數圖象變換規律,余弦函數圖象的對稱性,余弦函數的單調性和值域,屬于中檔題.20.(1);(2)4【解析】

(1)分類討論,求解x的范圍,取并集,得到絕對值不等式的解集,即得解;(2)轉化原不等式為:,利用均值不等式即得解.【詳解】(1)當時不等式可化為當時,不等式可化為;當時,不等式可化為;綜上不等式的解集為.(2)由(1)有,,,,即而當且僅當:,即,即時等號成立∴,綜上實數最大值為4.【點睛】本題考查了絕對值不等式的求解與不等式的恒成立問題,考查了學生綜合分析,轉化劃

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論