




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆安徽省安慶市潛山二中高三下第11次大練習(xí)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)且,則下列不等式成立的是()A. B. C. D.2.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.3.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.4.已知集合,則集合真子集的個數(shù)為()A.3 B.4 C.7 D.85.已知點在雙曲線上,則該雙曲線的離心率為()A. B. C. D.6.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標(biāo)原點),則k的值為()A. B. C.或- D.和-7.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,,則的值為()A.0 B.2 C.4 D.18.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)9.設(shè)命題:,,則為A., B.,C., D.,10.一個封閉的棱長為2的正方體容器,當(dāng)水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),則容器里水面的最大高度為()A. B. C. D.11.在平面直角坐標(biāo)系中,將點繞原點逆時針旋轉(zhuǎn)到點,設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.12.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-2二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.14.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.15.學(xué)校藝術(shù)節(jié)對同一類的,,,四件參賽作品,只評一件一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:甲說:“或作品獲得一等獎”;乙說:“作品獲得一等獎”;丙說:“,兩項作品未獲得一等獎”;丁說:“作品獲得一等獎”.若這四位同學(xué)中有且只有兩位說的話是對的,則獲得一等獎的作品是______.16.已知函數(shù).若在區(qū)間上恒成立.則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某房地產(chǎn)開發(fā)商在其開發(fā)的某小區(qū)前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發(fā)商計劃從點出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長度設(shè)計到最長,求的最大值.18.(12分)如圖,內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,平面ABC,,.(1)求證:平面ACD;(2)設(shè),表示三棱錐B-ACE的體積,求函數(shù)的解析式及最大值.19.(12分)在平面直角坐標(biāo)系中,已知拋物線的焦點為,準(zhǔn)線為,是拋物線上上一點,且點的橫坐標(biāo)為,.(1)求拋物線的方程;(2)過點的直線與拋物線交于、兩點,過點且與直線垂直的直線與準(zhǔn)線交于點,設(shè)的中點為,若、、四點共圓,求直線的方程.20.(12分)設(shè)(1)證明:當(dāng)時,;(2)當(dāng)時,求整數(shù)的最大值.(參考數(shù)據(jù):,)21.(12分)已知△ABC的兩個頂點A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=2,動點C的軌跡為曲線G.(1)求曲線G的方程;(2)設(shè)直線l與曲線G交于M,N兩點,點D在曲線G上,是坐標(biāo)原點,判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.22.(10分)若不等式在時恒成立,則的取值范圍是__________.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】項,由得到,則,故項正確;項,當(dāng)時,該不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤;項,當(dāng),時,,即不等式不成立,故項錯誤.綜上所述,故選.2.B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.3.D【解析】
先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎(chǔ)題。4.C【解析】
解出集合,再由含有個元素的集合,其真子集的個數(shù)為個可得答案.【詳解】解:由,得所以集合的真子集個數(shù)為個.故選:C【點睛】此題考查利用集合子集個數(shù)判斷集合元素個數(shù)的應(yīng)用,含有個元素的集合,其真子集的個數(shù)為個,屬于基礎(chǔ)題.5.C【解析】
將點A坐標(biāo)代入雙曲線方程即可求出雙曲線的實軸長和虛軸長,進而求得離心率.【詳解】將,代入方程得,而雙曲線的半實軸,所以,得離心率,故選C.【點睛】此題考查雙曲線的標(biāo)準(zhǔn)方程和離心率的概念,屬于基礎(chǔ)題.6.C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.7.C【解析】
根據(jù)函數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.【點睛】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.8.C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.9.D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因為全稱命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.【點睛】本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.10.B【解析】
根據(jù)已知可知水面的最大高度為正方體面對角線長的一半,由此得到結(jié)論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉(zhuǎn),所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎(chǔ)題.11.A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因為點在角的終邊上,所以依題有,則,所以,故選:A【點睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.12.B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結(jié)果:【點睛】本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎(chǔ)題.14.【解析】
作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.15.B【解析】
首先根據(jù)“學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎”,故假設(shè)分別為一等獎,然后判斷甲、乙、丙、丁四位同學(xué)的說法的正確性,即可得出結(jié)果.【詳解】若A為一等獎,則甲、丙、丁的說法均錯誤,不滿足題意;若B為一等獎,則乙、丙的說法正確,甲、丁的說法錯誤,滿足題意;若C為一等獎,則甲、丙、丁的說法均正確,不滿足題意;若D為一等獎,則乙、丙、丁的說法均錯誤,不滿足題意;綜上所述,故B獲得一等獎.【點睛】本題屬于信息題,可根據(jù)題目所給信息來找出解題所需要的條件并得出答案,在做本題的時候,可以采用依次假設(shè)為一等獎并通過是否滿足題目條件來判斷其是否正確.16.【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因為在區(qū)間上恒成立,解得即故答案為:【點睛】本題考查一元二次不等式及函數(shù)的綜合問題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)米.【解析】
(1)過點作于點再在中利用正弦定理求解,再根據(jù)求解,進而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減,又,當(dāng)時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數(shù)在實際中的應(yīng)用,需要根據(jù)題意建立角度與長度間的關(guān)系,進而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對應(yīng)的最值即可.屬于難題.18.(1)見解析(2),最大值.【解析】
(1)先證明,,故平面ADC.由,即得證;(2)可證明平面ABC,結(jié)合條件表示出,利用均值不等式,即得解.【詳解】(1)證明:∵四邊形DCBE為平行四邊形,∴,.∵平面ABC,平面ABC,∴.∵AB是圓O的直徑,∴,且,平面ADC,∴平面ADC.∵,∴平面ADC.(2)解∵平面ABC,,∴平面ABC.在中,,.在中,∵,∴,∴,∴.∵,當(dāng)且僅當(dāng),即時取等號,∴當(dāng)時,體積有最大值.【點睛】本題考查了線面垂直的證明和三棱錐的體積,考查了學(xué)生邏輯推理,空間想象,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.19.(1)(2)【解析】
(1)由拋物線的定義可得,即可求出,從而得到拋物線方程;(2)設(shè)直線的方程為,代入,得.設(shè),,列出韋達定理,表示出中點的坐標(biāo),若、、、四點共圓,再結(jié)合,得,則即可求出參數(shù),從而得解;【詳解】解:(1)由拋物線定義,得,解得,所以拋物線的方程為.(2)設(shè)直線的方程為,代入,得.設(shè),,則,.由,,得,所以.因為直線的斜率為,所以直線的斜率為,則直線的方程為.由解得.若、、、四點共圓,再結(jié)合,得,則,解得,所以直線的方程為.【點睛】本題考查拋物線的定義及性質(zhì)的應(yīng)用,直線與拋物線綜合問題,屬于中檔題.20.(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對函數(shù)求導(dǎo),變形后討論當(dāng)時的函數(shù)單調(diào)情況:當(dāng)時,可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗的符號,即可確定整數(shù)的最大值;當(dāng)時不滿足題意,因為求整數(shù)的最大值,所以時無需再討論.【詳解】(1)證明:當(dāng)時代入可得,令,,則,令解得,當(dāng)時,所以在單調(diào)遞增,當(dāng)時,所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時,當(dāng)時,,則在時單調(diào)遞減,所以,即當(dāng)時成立;所以此時需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時,即在內(nèi)單調(diào)遞減,當(dāng)時,即在內(nèi)單調(diào)遞增,所以當(dāng)時取得最小值,則,,,所以此時滿足的整數(shù)的最大值為;當(dāng)時,在時,此時,與題意矛盾,所以不成立.因為求整數(shù)的最大值,所以時無需再討論,綜上所述,當(dāng)時,整數(shù)的最大值為.【點睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號,綜合性強,屬于難題.21.(1).(2)四邊形OMDN的面積是定值,其定值為.【解析】
(1)根據(jù)三角形內(nèi)切圓的性質(zhì)證得,由此判斷出點的軌跡為橢圓,并由此求得曲線的方程.(2)將直線的斜率分成不存在或存在兩種情況,求出平行四邊形的面積,兩種情況下四邊形的面積都為,由此證得四邊形的面積為定值.【詳解】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 便利店店長合同協(xié)議書
- 租鋪面餐飲合同協(xié)議書
- 合同協(xié)議書完整版
- 施工合同解除部分協(xié)議書
- 美容美體項目計劃書
- 廢船轉(zhuǎn)讓合同協(xié)議書模板
- 中間人合同協(xié)議書范本
- 創(chuàng)業(yè)計劃書炸鴨爪
- 彩票店合伙合同協(xié)議書
- 奶粉銷毀合同協(xié)議書范本
- 國際音標(biāo)卡片(打印版)
- 2023年四川省資陽中考英語真題(含答案)
- 石砌體結(jié)構(gòu)房屋安全性鑒定課件
- 護理管理pdca的課件
- 客戶服務(wù)與問題解決技巧培訓(xùn)
- 騰訊云安全運維
- (材料)綜合物性測量系統(tǒng)
- 土壤農(nóng)化分析實驗智慧樹知到課后章節(jié)答案2023年下甘肅農(nóng)業(yè)大學(xué)
- 人教版八年級《竹竿舞》評課稿
- 往生薦亡功德文疏教學(xué)教材
- 有機植物生產(chǎn)中允許使用的投入品
評論
0/150
提交評論