




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河北保定一中高三下學期四月調考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.2.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.2333.的展開式中含的項的系數為()A. B.60 C.70 D.804.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.5.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.66.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.7.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若點在角的終邊上,則()A. B. C. D.8.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉到交圓于點,則的最大值為()A.3 B.2 C. D.9.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經過△AB'CA.重心 B.垂心 C.內心 D.外心10.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,11.設不等式組,表示的平面區域為,在區域內任取一點,則點的坐標滿足不等式的概率為A. B.C. D.12.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為__________.15.若非零向量,滿足,,,則______.16.已知正四棱柱的底面邊長為,側面的對角線長是,則這個正四棱柱的體積是____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)已知函數,函數().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.19.(12分)已知,函數有最小值7.(1)求的值;(2)設,,求證:.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數,).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.21.(12分)已知函數(I)若討論的單調性;(Ⅱ)若,且對于函數的圖象上兩點,存在,使得函數的圖象在處的切線.求證:.22.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.2、C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,Fc,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.3、B【解析】
展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,由二項式的通項,可得解【詳解】由題意,展開式中含的項是由的展開式中含和的項分別與前面的常數項和項相乘得到,所以的展開式中含的項的系數為.故選:B【點睛】本題考查了二項式系數的求解,考查了學生綜合分析,數學運算的能力,屬于基礎題.4、A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以OD=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.5、D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.6、D【解析】
設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.7、D【解析】
由題知,又,代入計算可得.【詳解】由題知,又.故選:D【點睛】本題主要考查了三角函數的定義,誘導公式,二倍角公式的應用求值.8、C【解析】
設射線OA與x軸正向所成的角為,由三角函數的定義得,,,利用輔助角公式計算即可.【詳解】設射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數的最值問題,涉及到三角函數的定義、輔助角公式等知識,是一道容易題.9、A【解析】
根據題意P到兩個平面的距離相等,根據等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.【點睛】本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.10、D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.11、A【解析】
畫出不等式組表示的區域,求出其面積,再得到在區域內的面積,根據幾何概型的公式,得到答案.【詳解】畫出所表示的區域,易知,所以的面積為,滿足不等式的點,在區域內是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.12、B【解析】
根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.14、【解析】
基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,由此能求出抽得的第一張卡片上的數不小于第二張卡片上的數的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.15、1【解析】
根據向量的模長公式以及數量積公式,得出,解方程即可得出答案.【詳解】,即解得或(舍)故答案為:【點睛】本題主要考查了向量的數量積公式以及模長公式的應用,屬于中檔題.16、【解析】Aa設正四棱柱的高為h得到故得到正四棱柱的體積為故答案為54.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】
(1)計算得到,由此可得結論;(2)根據分層抽樣原則可得男生和女生人數,由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據數學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.18、(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】
(1)求出的定義域,導函數,對參數、分類討論得到答案.(2)設函數,求導說明函數的單調性,求出函數的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數,則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數研究含參函數的單調性,利用導數證明不等式,屬于難題.19、(1).(2)見解析【解析】
(1)由絕對值三解不等式可得,所以當時,,即可求出參數的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.20、(1)(2)【解析】
(1)利用消參法以及點求解出的普通方程,根據極坐標與直角坐標的轉化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結合三角函數的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數方程、普通方程、極坐標方程的互化以及根據曲線上一點到直線距離的最值求參數,難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優先考慮將點的坐標設為參數方程的形式,然后再去求解.21、(1)見解析(2)見證明【解析】
(1)對函數求導,分別討論,以及,即可得出結果;(2)根據題意,由導數幾何意義得到,將證明轉化為證明即可,再令,設,用導數方法判斷出的單調性,進而可得出結論成立.【詳解】(1)解:易得,函數的定義域為,,令,得或.①當時,時,,函數單調遞減;時,,函數單調遞增.此時,的減區間為,增區間為.②當時,時,,函數單調遞減;或時,,函數單調遞增.此時,的減區間為,增區間為,.③當時,時,,函數單調遞增;此時,的減區間為.綜上,當時,的減區間為,增區間為:當時,的減區間為,增區間為.;當時,增區間為.(2)證明:由題意及導數的幾何意義,得由(1)中得.易知,導函數在上為增函數,所以,要證,只要證,即,即證.因為,不妨令,則.所以,所以在上為增函數,所以,即,所以,即,即.故有(得證).【點睛】本題主要考查導
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CI 412-2024隧道與地下空間支護結構滲漏智能檢測技術規程
- T/CCS 078-2023采煤工作面破碎頂板注漿加固技術要求
- T/CNFIA 225.2-2024食品中致敏原成分檢測方法第2部分:乳免疫分析法
- T/CEPPEA 5047-2024生活垃圾焚燒發電廠有毒及可燃氣體探測與自動報警系統設計規范
- T/CSIA 017-2024塔式起重機再制造技術規程
- 場地租賃合同標準范文4篇
- 2025年離婚協議書怎么寫3篇
- 室內設計肌理構成
- 債權債務轉移協議書2篇
- 食品工廠經營承包協議(標準版)4篇
- 物業管理部組織架構與職責劃分
- (2025春新版本)部編版七年級語文下冊全冊教案
- 高級病理學與病理學實驗技術知到智慧樹章節測試課后答案2024年秋浙江中醫藥大學
- 設備維護中的難題和重點:分析與應對計劃
- 貨運物流提前報備通知函
- 2025年度山西建設投資集團限公司高校畢業生招聘885人高頻重點提升(共500題)附帶答案詳解
- 2021-2022年北京市大興區六年級下冊期末數學試卷及答案(人教版)
- 高考高中物理知識點考點框架圖導圖
- 胃食管反流病指南
- 《假如我是患者》課件
- 第三單元+法律與教化+復習背誦清單 高二上學期歷史統編版(2019)選擇性必修1國家制度與社會治理
評論
0/150
提交評論