山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題_第1頁
山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題_第2頁
山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題_第3頁
山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題_第4頁
山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省德州市武城縣第二中學2025年第二學期高三年級階段性試測數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數滿足(為虛數單位),則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函數,存在實數,使得,則的最大值為()A. B. C. D.3.向量,,且,則()A. B. C. D.4.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.626.將函數圖象上所有點向左平移個單位長度后得到函數的圖象,如果在區(qū)間上單調遞減,那么實數的最大值為()A. B. C. D.7.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.8.2019年末,武漢出現新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現疫情最早,感染人員最多,防控壓力最大,武漢市從2月7日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強化網格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認為“與確診患者的密切接觸者”,這種情況下醫(yī)護人員要對其家庭成員隨機地逐一進行“核糖核酸”檢測,若出現陽性,則該家庭為“感染高危戶”.設該家庭每個成員檢測呈陽性的概率均為()且相互獨立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當時,最大,則()A. B. C. D.9.設函數是奇函數的導函數,當時,,則使得成立的的取值范圍是()A. B.C. D.10.函數在的圖象大致為()A. B.C. D.11.如圖,正方體的棱長為1,動點在線段上,、分別是、的中點,則下列結論中錯誤的是()A., B.存在點,使得平面平面C.平面 D.三棱錐的體積為定值12.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為__________(用具體數據作答).14.記為數列的前項和.若,則______.15.已知函數,若在定義域內恒有,則實數的取值范圍是__________.16.過直線上一點作圓的兩條切線,切點分別為,,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數).以坐標原點為極點,軸正半軸為極軸,建立極坐標系.已知點的直角坐標為,過的直線與曲線相交于,兩點.(1)若的斜率為2,求的極坐標方程和曲線的普通方程;(2)求的值.18.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.19.(12分)已知曲線,直線:(為參數).(I)寫出曲線的參數方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.20.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分別是棱AA1,AC和A1C1的中點,以為正交基底,建立如圖所示的空間直角坐標系F-xyz.(1)求異面直線AC與BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.21.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.22.(10分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由復數的除法運算可整理得到,由此得到對應的點的坐標,從而確定所處象限.【詳解】由得:,對應的點的坐標為,位于第一象限.故選:.【點睛】本題考查復數對應的點所在象限的求解,涉及到復數的除法運算,屬于基礎題.2.A【解析】

畫出分段函數圖像,可得,由于,構造函數,利用導數研究單調性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導數在函數性質探究中的應用,考查了學生數形結合,轉化劃歸,綜合分析,數學運算的能力,屬于較難題.3.D【解析】

根據向量平行的坐標運算以及誘導公式,即可得出答案.【詳解】故選:D【點睛】本題主要考查了由向量平行求參數以及誘導公式的應用,屬于中檔題.4.B【解析】

構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據題意恰當的選取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.5.B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.6.B【解析】

根據條件先求出的解析式,結合三角函數的單調性進行求解即可.【詳解】將函數圖象上所有點向左平移個單位長度后得到函數的圖象,則,設,則當時,,,即,要使在區(qū)間上單調遞減,則得,得,即實數的最大值為,故選:B.【點睛】本小題主要考查三角函數圖象變換,考查根據三角函數的單調性求參數,屬于中檔題.7.D【解析】

如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【詳解】如圖所示:過分別作于,于.,則,根據得到:,即,根據得到:,即,解得,,故.故選:.【點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.8.A【解析】

根據題意分別求出事件A:檢測5個人確定為“感染高危戶”發(fā)生的概率和事件B:檢測6個人確定為“感染高危戶”發(fā)生的概率,即可得出的表達式,再根據基本不等式即可求出.【詳解】設事件A:檢測5個人確定為“感染高危戶”,事件B:檢測6個人確定為“感染高危戶”,∴,.即設,則∴當且僅當即時取等號,即.故選:A.【點睛】本題主要考查概率的計算,涉及相互獨立事件同時發(fā)生的概率公式的應用,互斥事件概率加法公式的應用,以及基本不等式的應用,解題關鍵是對題意的理解和事件的分解,意在考查學生的數學運算能力和數學建模能力,屬于較難題.9.D【解析】構造函數,令,則,由可得,則是區(qū)間上的單調遞減函數,且,當x∈(0,1)時,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當x∈(1,+∞)時,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數,當x∈(-1,0)時,f(x)>0,(x2-1)f(x)<0∴當x∈(-∞,-1)時,f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項.點睛:函數的單調性是函數的重要性質之一,它的應用貫穿于整個高中數學的教學之中.某些數學問題從表面上看似乎與函數的單調性無關,但如果我們能挖掘其內在聯(lián)系,抓住其本質,那么運用函數的單調性解題,能起到化難為易、化繁為簡的作用.因此對函數的單調性進行全面、準確的認識,并掌握好使用的技巧和方法,這是非常必要的.根據題目的特點,構造一個適當的函數,利用它的單調性進行解題,是一種常用技巧.許多問題,如果運用這種思想去解決,往往能獲得簡潔明快的思路,有著非凡的功效.10.B【解析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數,排除C,D;,排除A.故選:B.【點睛】本題考查函數圖象的判斷,屬于常考題.11.B【解析】

根據平行的傳遞性判斷A;根據面面平行的定義判斷B;根據線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因為分別是中點,所以,故A正確;在B中,由于直線與平面有交點,所以不存在點,使得平面平面,故B錯誤;在C中,由平面幾何得,根據線面垂直的性質得出,結合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B【點睛】本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.12.D【解析】

由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

利用二項展開式的通項公式可求的系數.【詳解】的展開式的通項公式為,令,故,故的系數為.故答案為:.【點睛】本題考查二項展開式中指定項的系數,注意利用通項公式來計算,本題屬于容易題.14.1【解析】

由已知數列遞推式可得數列是以16為首項,以為公比的等比數列,再由等比數列的前項和公式求解.【詳解】由,得,.且,則,即.數列是以16為首項,以為公比的等比數列,則.故答案為:1.【點睛】本題主要考查數列遞推式,考查等比數列的前項和,意在考查學生對這些知識的理解掌握水平.15.【解析】

根據指數函數與對數函數圖象可將原題轉化為恒成立問題,湊而可知的圖象在過原點且與兩函數相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結合分母不為零的條件可最終確定的取值范圍.【詳解】由指數函數與對數函數圖象可知:,恒成立可轉化為恒成立,即恒成立,,即是夾在函數與的圖象之間,的圖象在過原點且與兩函數相切的兩條切線之間.設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導數幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結合指數函數和對數函數圖象將問題轉化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.16.【解析】

由切線的性質,可知,切由直角三角形PAO,PBO,即可設,進而表示,由圖像觀察可知進而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數求出最小值.【詳解】由題可知,,設,由切線的性質可知,則顯然,則或(舍去)因為令,則,由雙勾函數單調性可知其在區(qū)間上單調遞增,所以故答案為:【點睛】本題考查在以直線與圓的位置關系為背景下求向量數量積的最值問題,應用函數形式表示所求式子,進而利用分析函數單調性或基本不等式求得最值,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1):,:;(2)【解析】

(1)根據點斜式寫出直線的直角坐標方程,并轉化為極坐標方程,利用,將曲線的參數方程轉化為普通方程.(2)將直線的參數方程代入曲線的普通方程,結合直線參數的幾何意義以及根與系數關系,求得的值.【詳解】(1)的直角坐標方程為,即,則的極坐標方程為.曲線的普通方程為.(2)直線的參數方程為(為參數,為的傾斜角),代入曲線的普通方程,得.設,對應的參數分別為,,所以,在的兩側.則.【點睛】本小題主要考查直角坐標化為極坐標,考查參數方程化為普通方程,考查直線參數方程,考查直線參數的幾何意義,屬于中檔題.18.(1)詳見解析;(2).【解析】

(1)連接,設,可證得四邊形為平行四邊形,由此得到,根據線面平行判定定理可證得結論;(2)以為原點建立空間直角坐標系,利用二面角的空間向量求法可求得結果.【詳解】(1)連接,設,連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標系.設,四邊形為正方形,,,則,,,,,,,設為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關系的證明、空間向量法求解二面角的問題;關鍵是能夠熟練掌握二面角的向量求法,易錯點是求得法向量夾角余弦值后,未根據圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現錯誤.19.(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設,得橢圓的參數方程為,消去參數即得直線的普通方程為;(II)關鍵是處理好與角的關系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉化為橢圓上的點,到定直線的最大值與最小值問題處理.試題解析:(I)曲線C的參數方程為(為參數).直線的普通方程為.(II)曲線C上任意一點到的距離為.則.其中為銳角,且.當時,取到最大值,最大值為.當時,取到最小值,最小值為.【考點定位】1、橢圓和直線的參數方程;2、點到直線的距離公式;3、解直角三角形.20.(1).(2).【解析】

(1)先根據空間直角坐標系,求得向量和向量的坐標,再利用線線角的向量方法求解.(2)分別求得平面BFC1的一個法向量和平面BCC1的一個法向量,再利用面面角的向量方法求解.【詳解】規(guī)范解答(1)因為AB=1,AA1=2,則F(0,0,0),A,C,B,E,所以=(-1,0,0),=記異面直線AC和BE所成角為α,則cosα=|cos〈〉|==,所以異面直線AC和BE所成角的余弦值為.(2)設平面BFC1的法向量為=(x1,y1,z1).因為=,=,則取x1=4,得平面BFC1的一個法向量為=(4,0,1).設平面BCC1的法向量為=(x2,y2,z2).因為=,=(0,0,2),則取x2=得平面BCC1的一個法向量為=(,-1,0),所以cos〈〉==根據圖形可知二面角F-BC1-C為銳二面角,所以二面角F-BC1-C的余弦值為.【點睛】本題主要考查了空間向量法研究空間中線線角,面面角的求法,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.21.(1)極小值為,極大值為.(2)【解析】

(1)根據斜線的斜率即可求得參數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論