




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省昌樂縣第一中學2025屆高三年級第二學期教學質量調研(三)數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.1472.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.3.數列滿足:,則數列前項的和為A. B. C. D.4.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.5.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或06.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.47.年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.8.在中,為中點,且,若,則()A. B. C. D.9.下列函數中,在區間上單調遞減的是()A. B. C. D.10.某學校組織學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為,若低于60分的人數是18人,則該班的學生人數是()A.45 B.50 C.55 D.6011.《九章算術》“少廣”算法中有這樣一個數的序列:列出“全步”(整數部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數,逐個照此同樣方法,直至全部為整數,例如:及時,如圖:記為每個序列中最后一列數之和,則為()A.147 B.294 C.882 D.176412.設,滿足約束條件,則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的終邊過點,若,則__________.14.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.15.已知正方形邊長為,空間中的動點滿足,,則三棱錐體積的最大值是______.16.在的展開式中,項的系數是__________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)當時,討論函數的單調區間;(Ⅱ)若對任意的和恒成立,求實數的取值范圍.18.(12分)為調研高中生的作文水平.在某市普通高中的某次聯考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規定分數在50以上(含50)的作文被評為“優秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)新高考,取消文理科,實行“”,成績由語文、數學、外語統一高考成績和自主選考的3門普通高中學業水平考試等級性考試科目成績構成.為了解各年齡層對新高考的了解情況,隨機調查50人(把年齡在稱為中青年,年齡在稱為中老年),并把調查結果制成下表:年齡(歲)頻數515101055了解4126521(1)分別估計中青年和中老年對新高考了解的概率;(2)請根據上表完成下面列聯表,是否有95%的把握判斷對新高考的了解與年齡(中青年、中老年)有關?了解新高考不了解新高考總計中青年中老年總計附:.0.0500.0100.0013.8416.63510.828(3)若從年齡在的被調查者中隨機選取3人進行調查,記選中的3人中了解新高考的人數為,求的分布列以及.20.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數平均車速不超過的人數合計男性駕駛員女性駕駛員合計(2)根據這些樣本數據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數為,假定抽取的結果相互獨立,求的分布列和數學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821.(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.22.(10分)已知三棱錐中側面與底面都是邊長為2的等邊三角形,且面面,分別為線段的中點.為線段上的點,且.(1)證明:為線段的中點;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題2、A【解析】
設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.3、A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現丟項或多項的問題,導致計算結果錯誤.4、C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當的直角坐標系,是一道基礎題.5、C【解析】
求出函數的導函數,當時,只需,即,令,利用導數求其單調區間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.6、C【解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.7、B【解析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.8、B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.9、C【解析】
由每個函數的單調區間,即可得到本題答案.【詳解】因為函數和在遞增,而在遞減.故選:C【點睛】本題主要考查常見簡單函數的單調區間,屬基礎題.10、D【解析】
根據頻率分布直方圖中頻率=小矩形的高×組距計算成績低于60分的頻率,再根據樣本容量求出班級人數.【詳解】根據頻率分布直方圖,得:低于60分的頻率是(0.005+0.010)×20=0.30,∴樣本容量(即該班的學生人數)是60(人).故選:D.【點睛】本題考查了頻率分布直方圖的應用問題,也考查了頻率的應用問題,屬于基礎題11、A【解析】
根據題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數學文化,屬于基礎題.12、D【解析】
作出不等式對應的平面區域,由目標函數的幾何意義,通過平移即可求z的最大值.【詳解】作出不等式組的可行域,如圖陰影部分,作直線:在可行域內平移當過點時,取得最大值.由得:,故選:D【點睛】本題主要考查線性規劃的應用,利用數形結合是解決線性規劃題目的常用方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
】由題意利用任意角的三角函數的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.【點睛】本題主要考查任意角的三角函數的定義和誘導公式,屬基礎題.14、【解析】
將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.【點睛】本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.15、【解析】
以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設點,根據題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,,,設點,空間中的動點滿足,,所以,整理得,,當,時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.16、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)首先求得導函數,然后結合導函數的解析式分類討論函數的單調性即可;(Ⅱ)將原問題進行等價轉化為,,恒成立,然后構造新函數,結合函數的性質確定實數的取值范圍即可.【詳解】解:(Ⅰ)當時,,當時,在上恒成立,函數在上單調遞減;當時,由得:;由得:.∴當時,函數的單調遞減區間是,無單調遞增區間:當時,函數的單調遞減區間是,函數的單調遞增區間是.(Ⅱ)對任意的和,恒成立等價于:,,恒成立.即,,恒成立.令:,,,則得,由此可得:在區間上單調遞減,在區間上單調遞增,∴當時,,即又∵,∴實數的取值范圍是:.【點睛】本題主要考查導函數研究函數的單調性和恒成立問題,考查分類討論的數學思想,等價轉化的數學思想等知識,屬于中等題.18、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優秀作文”與“學生的文理科”有關(3)詳見解析【解析】
(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優秀作文”與“學生的文理科”有關.(3)由(2)可知,獲獎的概率為,的可能取值為0,1,2,,,,分布列如下:012數學期望為.【點睛】本題考查頻率分布直方圖、統計案例和離散型隨機變量的分布列與期望,考查學生的閱讀理解能力和計算能力,屬于中檔題.19、(1);(2)見解析,有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯;(3)分布列見解析,.【解析】
(1)分別求出中青年、中老年對高考了解的頻數,即可求出概率;(2)根據數據列出列聯表,求出的觀測值,對照表格,即可得出結論;(3)年齡在的被調查者共5人,其中了解新高考的有2人,可能取值為0,1,2,分別求出概率,列出隨機變量分布列,根據期望公式即可求解.【詳解】(1)由題中數據可知,中青年對新高考了解的概率,中老年對新高考了解的概率.(2)列聯表如圖所示了解新高考不了解新高考總計中青年22830老年81220總計302050,所以有95%的把握判斷了解新高考與年齡(中青年、中老年)有關聯.(3)年齡在的被調查者共5人,其中了解新高考的有2人,則抽取的3人中了解新高考的人數可能取值為0,1,2,則;;.所以的分布列為012.【點睛】本題考查概率、獨立性檢驗及隨機變量分布列和期望,考查計算求解能力,屬于基礎題.20、(1)填表見解析;有的把握認為,平均車速超過與性別有關(2)詳見解析【解析】
(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關.(2)利用二項
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論