甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷_第1頁
甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷_第2頁
甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷_第3頁
甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷_第4頁
甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省蘭州市第五十五中學2025屆高三3月聯合質量檢測試題數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“”的否定為()A. B.C. D.2.在中,為邊上的中點,且,則()A. B. C. D.3.已知函數為奇函數,且,則()A.2 B.5 C.1 D.34.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.5.下列結論中正確的個數是()①已知函數是一次函數,若數列通項公式為,則該數列是等差數列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.06.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.已知橢圓:的左、右焦點分別為,,點,在橢圓上,其中,,若,,則橢圓的離心率的取值范圍為()A. B.C. D.8.某歌手大賽進行電視直播,比賽現場有名特約嘉賓給每位參賽選手評分,場內外的觀眾可以通過網絡平臺給每位參賽選手評分.某選手參加比賽后,現場嘉賓的評分情況如下表,場內外共有數萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數為,場內外的觀眾評分的平均數為,所有嘉賓與場內外的觀眾評分的平均數為,則下列選項正確的是()A. B. C. D.9.若(是虛數單位),則的值為()A.3 B.5 C. D.10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.11.已知復數,滿足,則()A.1 B. C. D.512.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.成都市某次高三統考,成績X經統計分析,近似服從正態分布,且,若該市有人參考,則估計成都市該次統考中成績大于分的人數為_____.14.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____15.等差數列(公差不為0),其中,,成等比數列,則這個等比數列的公比為_____.16.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,橢圓:的右焦點為(,為常數),離心率等于0.8,過焦點、傾斜角為的直線交橢圓于、兩點.⑴求橢圓的標準方程;⑵若時,,求實數;⑶試問的值是否與的大小無關,并證明你的結論.18.(12分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.19.(12分)已知某種細菌的適宜生長溫度為12℃~27℃,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:℃)變化的規律,收集數據如下:溫度/℃14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27℃時,該種細菌的繁殖數量的預報值為多少?參考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,,參考數據:.20.(12分)已知分別是內角的對邊,滿足(1)求內角的大小(2)已知,設點是外一點,且,求平面四邊形面積的最大值.21.(12分)設函數.(1)若,求實數的取值范圍;(2)證明:,恒成立.22.(10分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

套用命題的否定形式即可.【詳解】命題“”的否定為“”,所以命題“”的否定為“”.故選:C【點睛】本題考查全稱命題的否定,屬于基礎題.2、A【解析】

由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎題.3、B【解析】

由函數為奇函數,則有,代入已知即可求得.【詳解】.故選:.【點睛】本題考查奇偶性在抽象函數中的應用,考查學生分析問題的能力,難度較易.4、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.5、B【解析】

根據等差數列的定義,線面關系,余弦函數以及基本不等式一一判斷即可;【詳解】解:①已知函數是一次函數,若數列的通項公式為,可得為一次項系數),則該數列是等差數列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數在區間上單調遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當且僅當時取等號,故④正確;綜上可得正確的有①④共2個;故選:B【點睛】本題考查命題的真假判斷,主要是正弦定理的運用和等比數列的求和公式、等差數列的定義和不等式的性質,考查運算能力和推理能力,屬于中檔題.6、D【解析】

結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.7、C【解析】

根據可得四邊形為矩形,設,,根據橢圓的定義以及勾股定理可得,再分析的取值范圍,進而求得再求離心率的范圍即可.【詳解】設,,由,,知,因為,在橢圓上,,所以四邊形為矩形,;由,可得,由橢圓的定義可得,①,平方相減可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故選:C【點睛】本題主要考查了橢圓的定義運用以及構造齊次式求橢圓的離心率的問題,屬于中檔題.8、C【解析】

計算出、,進而可得出結論.【詳解】由表格中的數據可知,,由頻率分布直方圖可知,,則,由于場外有數萬名觀眾,所以,.故選:B.【點睛】本題考查平均數的大小比較,涉及平均數公式以及頻率分布直方圖中平均數的計算,考查計算能力,屬于基礎題.9、D【解析】

直接利用復數的模的求法的運算法則求解即可.【詳解】(是虛數單位)可得解得本題正確選項:【點睛】本題考查復數的模的運算法則的應用,復數的模的求法,考查計算能力.10、A【解析】

陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.11、A【解析】

首先根據復數代數形式的除法運算求出,求出的模即可.【詳解】解:,,故選:A【點睛】本題考查了復數求模問題,考查復數的除法運算,屬于基礎題.12、B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】

根據正態分布密度曲線性質,結合求得,即可得解.【詳解】根據正態分布,且,所以故該市有人參考,則估計成都市該次統考中成績大于分的人數為.故答案為:.【點睛】此題考查正態分布密度曲線性質的理解辨析,根據曲線的對稱性求解概率,根據總人數求解成績大于114的人數.14、【解析】

雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.15、4【解析】

根據等差數列關系,用首項和公差表示出,解出首項和公差的關系,即可得解.【詳解】設等差數列的公差為,由題意得:,則整理得,,所以故答案為:4【點睛】此題考查等差數列基本量的計算,涉及等比中項,考查基本計算能力.16、【解析】

由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點睛】本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數法可得,橢圓方程為;(2)我們要知道=的條件應用,在于直線交橢圓兩交點M,N的橫坐標為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時,由(2)得;另一方面,當斜率存在即時,可設直線的斜率為,得直線MN:,聯立直線與橢圓方程,利用韋達定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無關試題解析:(1),得:,橢圓方程為(2)當時,,得:,于是當=時,,于是,得到(3)①當=時,由(2)知②當時,設直線的斜率為,,則直線MN:聯立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無關考點:(1)待定系數求橢圓方程;(2)橢圓簡單的幾何性質;(3)直線與圓錐曲線18、(1);(2).【解析】

(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據兩點間距離公式即可求得.【詳解】(1)直線的參數方程為(為參數),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數方程與普通方程轉化,極坐標與直角坐標的轉化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.19、(1)作圖見解析;更適合(2)(3)預報值為245【解析】

(1)由散點圖即可得到答案;(2)把兩邊取自然對數,得,由計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數量關于的回歸方程類型;(2)把兩邊取自然對數,得,即,由.∴,則關于的回歸方程為;(3)當時,計算可得;即溫度為27℃時,該種細菌的繁殖數量的預報值為245.【點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數據處理能力及運算能力,是一道中檔題.20、(1)(2)【解析】

(1)首先利用誘導公式及兩角和的余弦公式得到,再由同角三角三角的基本關系得到,即可求出角;(2)由(1)知,是正三角形,設,由余弦

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論