




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江西省贛州市寧都縣寧師中學高三第二次聯考數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.將函數的圖象向左平移個單位長度,得到的函數為偶函數,則的值為()A. B. C. D.2.已知是邊長為的正三角形,若,則A. B.C. D.3.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.4.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路5.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.06.設,,,則的大小關系是()A. B. C. D.7.若函數函數只有1個零點,則的取值范圍是()A. B. C. D.8.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,9.二項式展開式中,項的系數為()A. B. C. D.10.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.811.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.12.已知函數()的最小值為0,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數的圖像如圖所示,則該函數的最小正周期為________.14.在中,角A,B,C的對邊分別為a,b,c,且,則________.15.拋物線的焦點坐標為______.16.已知數列滿足,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.18.(12分)在△ABC中,角所對的邊分別為向量,向量,且.(1)求角的大小;(2)求的最大值.19.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.20.(12分)第7屆世界軍人運動會于2019年10月18日至27日在湖北武漢舉行,賽期10天,共設置射擊、游泳、田徑、籃球等27個大項,329個小項.共有來自100多個國家的近萬名現役軍人同臺競技.前期為迎接軍運會順利召開,武漢市很多單位和部門都開展了豐富多彩的宣傳和教育活動,努力讓大家更多的了解軍運會的相關知識,并倡議大家做文明公民.武漢市體育局為了解廣大民眾對軍運會知識的知曉情況,在全市開展了網上問卷調查,民眾參與度極高,現從大批參與者中隨機抽取200名幸運參與者,他們得分(滿分100分)數據,統計結果如下:組別頻數5304050452010(1)若此次問卷調查得分整體服從正態分布,用樣本來估計總體,設,分別為這200人得分的平均值和標準差(同一組數據用該區間中點值作為代表),求,的值(,的值四舍五入取整數),并計算;(2)在(1)的條件下,為感謝大家參與這次活動,市體育局還對參加問卷調查的幸運市民制定如下獎勵方案:得分低于的可以獲得1次抽獎機會,得分不低于的可獲得2次抽獎機會,在一次抽獎中,抽中價值為15元的紀念品A的概率為,抽中價值為30元的紀念品B的概率為.現有市民張先生參加了此次問卷調查并成為幸運參與者,記Y為他參加活動獲得紀念品的總價值,求Y的分布列和數學期望,并估算此次紀念品所需要的總金額.(參考數據:;;.)21.(12分)已知數列,滿足.(1)求數列,的通項公式;(2)分別求數列,的前項和,.22.(10分)已知()過點,且當時,函數取得最大值1.(1)將函數的圖象向右平移個單位得到函數,求函數的表達式;(2)在(1)的條件下,函數,求在上的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用三角函數的圖象變換求得函數的解析式,再根據三角函數的性質,即可求解,得到答案.【詳解】將將函數的圖象向左平移個單位長度,可得函數又由函數為偶函數,所以,解得,因為,當時,,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及三角函數的性質的應用,其中解答中熟記三角函數的圖象變換,合理應用三角函數的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2.A【解析】
由可得,因為是邊長為的正三角形,所以,故選A.3.C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.4.D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.5.C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.6.A【解析】
選取中間值和,利用對數函數,和指數函數的單調性即可求解.【詳解】因為對數函數在上單調遞增,所以,因為對數函數在上單調遞減,所以,因為指數函數在上單調遞增,所以,綜上可知,.故選:A【點睛】本題考查利用對數函數和指數函數的單調性比較大小;考查邏輯思維能力和知識的綜合運用能力;選取合適的中間值是求解本題的關鍵;屬于中檔題、常考題型.7.C【解析】
轉化有1個零點為與的圖象有1個交點,求導研究臨界狀態相切時的斜率,數形結合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數在函數零點問題中的應用,考查了學生數形結合,轉化劃歸,數學運算的能力,屬于較難題.8.B【解析】
試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.9.D【解析】
寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.10.B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.11.D【解析】
先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.12.C【解析】
設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據圖象利用,先求出的值,結合求出,然后利用周期公式進行求解即可.【詳解】解:由,得,,,則,,,即,則函數的最小正周期,故答案為:8【點睛】本題主要考查三角函數周期的求解,結合圖象求出函數的解析式是解決本題的關鍵.14.【解析】
利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.15.【解析】
變換得到,計算焦點得到答案.【詳解】拋物線的標準方程為,,所以焦點坐標為.故答案為:【點睛】本題考查了拋物線的焦點坐標,屬于簡單題.16.【解析】
項和轉化可得,討論是否滿足,分段表示即得解【詳解】當時,由已知,可得,∵,①故,②由①-②得,∴.顯然當時不滿足上式,∴故答案為:【點睛】本題考查了利用求,考查了學生綜合分析,轉化劃歸,數學運算,分類討論的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】
(1)根據正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.18.(1)(2)2【解析】
(1)轉化條件得,進而可得,即可得解;(2)由化簡可得,由結合三角函數的性質即可得解.【詳解】(1),,由正弦定理得,即,又,,又,,,由可得.(2)由(1)可得,,,,,,的最大值為2.【點睛】本題考查了平面向量平行、正弦定理以及三角恒等變換的應用,考查了三角函數的性質,屬于中檔題.19.(1)(2)最大值.【解析】
(1)根據通徑和即可求(2)設直線方程為,聯立橢圓,利用,用含的式子表示出,用換元,可得,最后用均值不等式求解.【詳解】解:(1)依題意有,,,所以橢圓的方程為.(2)設直線的方程為,聯立,得.所以,.所以.令,則,所以,因,則,所以,當且僅當,即時取得等號,即四邊形面積的最大值.【點睛】考查橢圓方程的求法和橢圓中四邊形面積最大值的求法,是難題.20.(1),,;(2)詳見解析.【解析】
(1)根據頻率分布表計算出平均數,進而計算方差,從而X~N(65,142),計算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每個取值對應的概率,列出分布列,計算期望,進而可得需要的總金額.【詳解】解:(1)由已知頻數表得:,,由,則,而,所以,則X服從正態分布,所以;(2)顯然,,所以所有Y的取值為15,30,45,60,,,,,所以Y的分布列為:Y15304560P所以,需要的總金額為:.【點睛】本題考查了利用頻率分布表計算平均數,方差,考查了正態分布,考查了離散型隨機變量的概率分布列和數學期望,主要考查數據分析能力和計算能力,屬于中檔題.21.(1)(2);【解析】
(1),,可得為公比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 抖音短視頻內容爭議仲裁服務協議
- 智能家居產品分銷渠道拓展及市場推廣支持合同
- 教師師德規范執行與履行責任協議
- 影視行業器材運輸保險與專用保險箱租賃合同
- 電動汽車電池租賃與充電樁建設一體化合同
- 居間人傭金協議書
- 紙包魚加盟協議書
- 小店鋪轉讓協議書
- 陽合同取消協議書
- 老舊酒回收協議書
- 協同治理:理論研究框架與分析模型
- JTS-T 200-2023 設計使用年限50年以上港口工程結構設計指南
- 無人智能配送車技術協議
- 疼痛科護士的非藥物疼痛管理技巧
- 土地承包經營權證樣式-1221
- 爆破作業的安全規定與操作程序
- 前庭大腺囊腫護理查房課件
- 國開《Windows網絡操作系統管理》形考任務3-磁盤存儲與文件服務實訓
- 深圳中考自主招生簡歷
- 保險團隊訓練師落地授課法
- 有限空間作業管理臺帳(參考模板)
評論
0/150
提交評論