遼寧省本溪市第一中學2025屆高三聯合考試數學試題_第1頁
遼寧省本溪市第一中學2025屆高三聯合考試數學試題_第2頁
遼寧省本溪市第一中學2025屆高三聯合考試數學試題_第3頁
遼寧省本溪市第一中學2025屆高三聯合考試數學試題_第4頁
遼寧省本溪市第一中學2025屆高三聯合考試數學試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省本溪市第一中學2025屆高三聯合考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.2.設函數定義域為全體實數,令.有以下6個論斷:①是奇函數時,是奇函數;②是偶函數時,是奇函數;③是偶函數時,是偶函數;④是奇函數時,是偶函數⑤是偶函數;⑥對任意的實數,.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤3.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.4.若,則實數的大小關系為()A. B. C. D.5.臺球是一項國際上廣泛流行的高雅室內體育運動,也叫桌球(中國粵港澳地區的叫法)、撞球(中國臺灣地區的叫法)控制撞球點、球的旋轉等控制母球走位是擊球的一項重要技術,一次臺球技術表演節目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為()A.50cm B.40cm C.50cm D.20cm6.已知命題:“關于的方程有實根”,若為真命題的充分不必要條件為,則實數的取值范圍是()A. B. C. D.7.已知函數(表示不超過x的最大整數),若有且僅有3個零點,則實數a的取值范圍是()A. B. C. D.8.()A. B. C. D.9.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.10.關于函數有下述四個結論:()①是偶函數;②在區間上是單調遞增函數;③在上的最大值為2;④在區間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④11.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.12.設等差數列的前項和為,若,則()A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.14.三棱錐中,點是斜邊上一點.給出下列四個命題:①若平面,則三棱錐的四個面都是直角三角形;②若,,,平面,則三棱錐的外接球體積為;③若,,,在平面上的射影是內心,則三棱錐的體積為2;④若,,,平面,則直線與平面所成的最大角為.其中正確命題的序號是__________.(把你認為正確命題的序號都填上)15.已知函數,則函數的極大值為___________.16.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現有一善織布的女子,從第2天開始,每天比前一天多織相同數量的布,第一天織了5尺布,現在一個月(按30天計算)共織布390尺.”則每天增加的數量為____尺,設該女子一個月中第n天所織布的尺數為,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若,求實數的取值范圍;(2)證明:,恒成立.18.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.19.(12分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.20.(12分)設數列是等比數列,,已知,(1)求數列的首項和公比;(2)求數列的通項公式.21.(12分)某單位準備購買三臺設備,型號分別為已知這三臺設備均使用同一種易耗品,提供設備的商家規定:可以在購買設備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設備時應購買的易耗品的件數.該單位調查了這三種型號的設備各60臺,調査每臺設備在一個月中使用的易耗品的件數,并得到統計表如下所示.每臺設備一個月中使用的易耗品的件數678型號A30300頻數型號B203010型號C04515將調查的每種型號的設備的頻率視為概率,各臺設備在易耗品的使用上相互獨立.(1)求該單位一個月中三臺設備使用的易耗品總數超過21件的概率;(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據,該單位在購買設備時應同時購買20件還是21件易耗品?22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.2.A【解析】

根據函數奇偶性的定義即可判斷函數的奇偶性并證明.【詳解】當是偶函數,則,所以,所以是偶函數;當是奇函數時,則,所以,所以是偶函數;當為非奇非偶函數時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A【點睛】本題考查了函數的奇偶性定義,掌握奇偶性定義是解題的關鍵,屬于基礎題.3.D【解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.4.A【解析】

將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【點睛】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大小;若真數相同,則結合對數函數的圖像或者換底公式可判斷大小;若真數和底數都不相同,則可與中間值如1,0比較大小.5.D【解析】

過點做正方形邊的垂線,如圖,設,利用直線三角形中的邊角關系,將用表示出來,根據,列方程求出,進而可得正方形的邊長.【詳解】過點做正方形邊的垂線,如圖,設,則,,則,因為,則,整理化簡得,又,得,.即該正方形的邊長為.故選:D.【點睛】本題考查直角三角形中的邊角關系,關鍵是要構造直角三角形,是中檔題.6.B【解析】命題p:,為,又為真命題的充分不必要條件為,故7.A【解析】

根據[x]的定義先作出函數f(x)的圖象,利用函數與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數和的圖象如圖,當a=1時,與有無數多個交點,當直線經過點時,即,時,與有兩個交點,當直線經過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數的范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域(最值)問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.8.A【解析】

分子分母同乘,即根據復數的除法法則求解即可.【詳解】解:,故選:A【點睛】本題考查復數的除法運算,屬于基礎題.9.C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【點睛】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.10.C【解析】

根據函數的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數,故①正確.由于,,所以在區間上不是單調遞增函數,所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數,所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區間,有兩個零點.由于為偶函數,所以在區間有兩個零點.故在區間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數的奇偶性、單調性、最值和零點,考查化歸與轉化的數學思想方法,屬于中檔題.11.D【解析】解:根據幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據,計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據計算它的體積即可.12.B【解析】

根據題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數列的求和,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

由題得,再根據求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.【點睛】本題考查雙曲線漸近線求離心率的問題.屬于基礎題.14.①②③【解析】

對①,由線面平行的性質可判斷正確;對②,三棱錐外接球可看作正方體的外接球,結合外接球半徑公式即可求解;對③,結合題意作出圖形,由勾股定理和內接圓對應面積公式求出錐體的高,則可求解;對④,由動點分析可知,當點與點重合時,直線與平面所成的角最大,結合幾何關系可判斷錯誤;【詳解】對于①,因為平面,所以,,,又,所以平面,所以,故四個面都是直角三角形,∴①正確;對于②,若,,,平面,∴三棱錐的外接球可以看作棱長為4的正方體的外接球,∴,,∴體積為,∴②正確;對于③,設內心是,則平面,連接,則有,又內切圓半徑,所以,,故,∴三棱錐的體積為,∴③正確;對于④,∵若,平面,則直線與平面所成的角最大時,點與點重合,在中,,∴,即直線與平面所成的最大角為,∴④不正確,故答案為:①②③.【點睛】本題考查立體幾何基本關系的應用,線面垂直的性質及判定、錐體體積、外接球半徑求解,線面角的求解,屬于中檔題15.【解析】

對函數求導,通過賦值,求得,再對函數單調性進行分析,求得極大值.【詳解】,故解得,,令,解得函數在單調遞增,在單調遞減,故的極大值為故答案為:.【點睛】本題考查函數極值的求解,難點是要通過賦值,求出未知量.16.52【解析】

設從第2天開始,每天比前一天多織尺布,由等差數列前項和公式求出,由此利用等差數列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,

則,

解得,即每天增加的數量為,

,故答案為,52.【點睛】本題主要考查等差數列的通項公式、等差數列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.18.(1)證明見解析;(2)證明見解析;(3).【解析】

(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.19.(1);(2)見解析.【解析】

(1)在中,計算出的值,可得出的值,進而可得出的值,由此可得出橢圓的標準方程;(2)設點、,設直線的方程為,將該直線方程與橢圓方程聯立,列出韋達定理,根據已知條件得出,利用韋達定理和斜率公式化簡得出與所滿足的關系式,代入直線的方程,即可得出直線所過定點的坐標.【詳解】(1)在中,,,,,,,,因此,橢圓的標準方程為;(2)由題不妨設,設點,聯立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點.【點睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點的問題,考查計算能力,屬于中等題.20.(1)(2)【解析】

本題主要考查了等比數列的通項公式的求解,數列求和的錯位相減求和是數列求和中的重點與難點,要注意掌握.(1)設等比數列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結合數列的特點,考慮利用錯位相減可求數列的和解:(1)(2),兩式相減:21.(1)(2)應該購買21件易耗品【解析】

(1)由統計表中數據可得型號分別為在一個月使用易耗品的件數為6,7,8時的概率,設該單

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論