




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市第四十四中學下學期高三數學試題第三次統一練習試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,則()A. B. C. D.2.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.3.設變量滿足約束條件,則目標函數的最大值是()A.7 B.5 C.3 D.24.已知函數在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、5.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.7.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件8.己知拋物線的焦點為,準線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.69.設a,b都是不等于1的正數,則“”是“”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件10.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.設,則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件12.下列不等式成立的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在編號為1,2,3,4,5且大小和形狀均相同的五張卡片中,一次隨機抽取其中的三張,則抽取的三張卡片編號之和是偶數的概率為________.14.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.15.已知實數,滿足則的取值范圍是______.16.已知,則_____。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知公比為正數的等比數列的前項和為,且,.(1)求數列的通項公式;(2)設,求數列的前項和.18.(12分)已知如圖1,在Rt△ABC中,∠ACB=30°,∠ABC=90°,D為AC中點,AEBD于E,延長AE交BC于F,將△ABD沿BD折起,使平面ABD平面BCD,如圖2所示。(Ⅰ)求證:AE平面BCD;(Ⅱ)求二面角A-DC-B的余弦值;(Ⅲ)求三棱錐B-AEF與四棱錐A-FEDC的體積的比(只需寫出結果,不要求過程).19.(12分)設函數.(1)若,求實數的取值范圍;(2)證明:,恒成立.20.(12分)設數列是等差數列,其前項和為,且,.(1)求數列的通項公式;(2)證明:.21.(12分)已知函數.⑴當時,求函數的極值;⑵若存在與函數,的圖象都相切的直線,求實數的取值范圍.22.(10分)選修4-5:不等式選講已知函數(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.2、D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最?。藭r由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.3、B【解析】
由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組求得最優解的坐標,把最優解的坐標代入目標函數得結論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當直經過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規劃中,利用可行域求目標函數的最值,屬于簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.4、A【解析】
設,利用導數和題設條件,得到,得出函數在R上單調遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數在R上單調遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導數研究函數的單調性及其應用,以及利用單調性比較大小,其中解答中根據題意合理構造新函數,利用新函數的單調性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.5、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.6、C【解析】
由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.7、D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當時,,但,故充分條件推不出;當時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數在解三角形中的具體應用,屬于基礎題8、D【解析】
作,垂足為,過點N作,垂足為G,設,則,結合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設,由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質及平面幾何的有關知識,屬于中檔題.9、C【解析】
根據對數函數以及指數函數的性質求解a,b的范圍,再利用充分必要條件的定義判斷即可.【詳解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分條件,故選C.【點睛】本題考查必要條件、充分條件及充分必要條件的判斷方法,考查指數,對數不等式的解法,是基礎題.10、A【解析】
利用已知條件畫出幾何體的直觀圖,然后求解幾何體的體積.【詳解】幾何體的三視圖的直觀圖如圖所示,則該幾何體的體積為:.故選:.【點睛】本題考查三視圖求解幾何體的體積,判斷幾何體的形狀是解題的關鍵.11、B【解析】
解出兩個不等式的解集,根據充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因為集合,所以“”是“”的必要不充分條件.故選:B【點睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對值不等式和一元二次不等式的解法.12、D【解析】
根據指數函數、對數函數、冪函數的單調性和正余弦函數的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調遞減,,錯誤;對于,,,,錯誤;對于,在上單調遞增,,正確.故選:.【點睛】本題考查根據初等函數的單調性比較大小的問題;關鍵是熟練掌握正余弦函數圖象、指數函數、對數函數和冪函數的單調性.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出所有的基本事件個數,再求出“抽取的三張卡片編號之和是偶數”這一事件包含的基本事件個數,利用古典概型的概率計算公式即可算出結果.【詳解】一次隨機抽取其中的三張,所有基本事件為:1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5;共有10個,其中“抽取的三張卡片編號之和是偶數”包含6個基本事件,因此“抽取的三張卡片編號之和是偶數”的概率為:.故答案為:.【點睛】本題考查了古典概型及其概率計算公式,屬于基礎題.14、【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.15、【解析】
根據約束條件畫出可行域,即可由直線的平移方法求得的取值范圍.【詳解】.由題意,畫出約束條件表示的平面區域如下圖所示,令,則如圖所示,圖中直線所示的兩個位置為的臨界位置,根據幾何關系可得與軸的兩個交點分別為,所以的取值范圍為.故答案為:【點睛】本題考查了非線性約束條件下線性規劃的簡單應用,由數形結合法求線性目標函數的取值范圍,屬于中檔題.16、【解析】
由已知求,再利用和角正切公式,求得,【詳解】因為所以cos因此.【點睛】本題考查了同角三角函數基本關系式與和角的正切公式。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)判斷公比不為1,運用等比數列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數列的錯位相減法求和,以及等比數列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數的等比數列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數列的通項公式和求和公式的運用,考查數列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.18、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)1:5【解析】
(Ⅰ)由平面ABD⊥平面BCD,交線為BD,AE⊥BD于E,能證明AE⊥平面BCD;(Ⅱ)以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,建立空間直角坐標系E-xyz,利用向量法求出二面角A-DC-B的余弦值;(Ⅲ)利用體積公式分別求出三棱錐B-AEF與四棱錐A-FEDC的體積,再作比寫出答案即可.【詳解】(Ⅰ)證明:∵平面ABD⊥平面BCD,交線為BD,又在△ABD中,AE⊥BD于E,AE?平面ABD,∴AE⊥平面BCD.(Ⅱ)由(1)知AE⊥平面BCD,∴AE⊥EF,由題意知EF⊥BD,又AE⊥BD,如圖,以E為坐標原點,分別以EF、ED、EA所在直線為x軸,y軸,z軸,
建立空間直角坐標系E-xyz,設AB=BD=DC=AD=2,
則BE=ED=1,∴AE=,BC=2,BF=,則E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),
F(,0,0),C(,2,0),,,由AE⊥平面BCD知平面BCD的一個法向量為,設平面ADC的一個法向量,則,取x=1,得,∴,∴二面角A-DC-B的平面角為銳角,故余弦值為.
(Ⅲ)三棱錐B-AEF與四棱錐A-FEDC的體積的比為:1:5.【點睛】本題考查線面垂直的證明、幾何體體積計算、二面角有關的立體幾何綜合題,屬于中等題.19、(1)(2)證明見解析【解析】
(1)將不等式化為,利用零點分段法,求得不等式的解集.(2)將要證明的不等式轉化為證,恒成立,由的最小值為,得到只要證,即證,利用絕對值不等式和基本不等式,證得上式成立.【詳解】(1)∵,∴,即當時,不等式化為,∴當時,不等式化為,此時無解當時,不等式化為,∴綜上,原不等式的解集為(2)要證,恒成立即證,恒成立∵的最小值為-2,∴只需證,即證又∴成立,∴原題得證【點睛】本題考查絕對值不等式的性質、解法,基本不等式等知識;考查推理論證能力、運算求解能力;考查化歸與轉化,分類與整合思想.20、(1)(2)見解析【解析】
(1)設數列的公差為,由,得到,再結合題干所給數據得到公差,即可求得數列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設數列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數列的通項公式的計算,放縮法證明數列不等式,屬于中檔題.21、(1)當時,函數取得極小值為,無極大值;(2)【解析】試題分析:(1),通過求導分析,得函數取得極小值為,無極大值;(2),所以,通過求導討論,得到的取值范圍是.試題解析:(1)函數的定義域為當時,,所以所以當時,,當時,,所以函數在區間單調遞減,在區間單調遞增,所以當時,函數取得極小值為,無極大值;(2)設函數上點與函數上點處切線相同,則所以所以,代入得:設,則不妨設則當時,,當時,所以在區間上單調遞減,在區間上單調遞增,代入可得:設,則對恒成立,所以在區間上單調遞增,又所以當時,即當時,又當時因此當時,函數必有零點;即當時,必存在使得成立;即存在使得函數上點與函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 模特短視頻拍攝合同協議
- 2025校園餐飲服務合同
- 樓頂翻防水施工合同協議
- 周轉材料處置合同協議
- 2025如何高效管理企業合同風險與合規
- 2025年精密空調供貨與安裝合同
- 2025飲料代理商合同模板
- 2025品牌鞋類代理合同模板
- 2025股權合同模板
- 擔保公司 合作協議
- 2025年數據安全法及個人信息保護法培訓試題
- 安徽省示范高中皖北協作區高三下學期第27屆聯考(一模)數學試題
- (高清版)DB12∕T 934-2020 公路工程資料管理技術規程
- 《礦山安全生產治本攻堅三年行動(2025-2027年)實施方案》培訓
- SYB創業培訓全案例解析成功創業之道
- 面部筋膜培訓課件
- ISO17025(2017中文清晰版本)
- 粉塵(鋁粉)爆炸預防措施安全培訓
- 《Python與數據分析應用》課件-第10章 數據分析工具Pandas
- 春季如何預防過敏
- 鄉鎮保密法知識培訓課件
評論
0/150
提交評論