2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題_第1頁
2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題_第2頁
2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題_第3頁
2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題_第4頁
2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆廣西岑溪市高考模擬沖刺卷(提優卷)(二)數學試題文試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.2.數學中有許多形狀優美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④3.已知函數,對任意的,,當時,,則下列判斷正確的是()A. B.函數在上遞增C.函數的一條對稱軸是 D.函數的一個對稱中心是4.學業水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人5.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據此可估計陰影部分的面積是()A. B. C.10 D.6.已知滿足,,,則在上的投影為()A. B. C. D.27.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③8.已知函數且,則實數的取值范圍是()A. B. C. D.9.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.10.執行如圖的程序框圖,若輸出的結果,則輸入的值為()A. B.C.3或 D.或11.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.112.復數滿足為虛數單位),則的虛部為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知四棱錐的底面ABCD是邊長為2的正方形,且.若四棱錐P-ABCD的五個頂點在以4為半徑的同一球面上,當PA最長時,則______________;四棱錐P-ABCD的體積為______________.14.《易經》是中國傳統文化中的精髓,如圖是易經八卦(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(""表示一根陽線,""表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有兩根陽線,四根陰線的概率為_______.15.的展開式中,的系數是__________.(用數字填寫答案)16.已知數列的各項均為正數,滿足,.,若是等比數列,數列的通項公式_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求和的直角坐標方程;(2)已知為曲線上的一個動點,求線段的中點到直線的最大距離.18.(12分)已知橢圓C的中心在坐標原點,其短半軸長為1,一個焦點坐標為,點在橢圓上,點在直線上,且.(1)證明:直線與圓相切;(2)設與橢圓的另一個交點為,當的面積最小時,求的長.19.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).20.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.21.(12分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標原點,求直線OG斜率的取值范圍.22.(10分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.2.C【解析】

①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.3.D【解析】

利用輔助角公式將正弦函數化簡,然后通過題目已知條件求出函數的周期,從而得到,即可求出解析式,然后利用函數的性質即可判斷.【詳解】,又,即,有且僅有滿足條件;又,則,,函數,對于A,,故A錯誤;對于B,由,解得,故B錯誤;對于C,當時,,故C錯誤;對于D,由,故D正確.故選:D【點睛】本題考查了簡單三角恒等變換以及三角函數的性質,熟記性質是解題的關鍵,屬于基礎題.4.D【解析】

根據題意分別計算出物理等級為,化學等級為的學生人數以及物理等級為,化學等級為的學生人數,結合表格中的數據進行分析,可得出合適的選項.【詳解】根據題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變為:物理化學對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.5.D【解析】

直接根據幾何概型公式計算得到答案.【詳解】根據幾何概型:,故.故選:.【點睛】本題考查了根據幾何概型求面積,意在考查學生的計算能力和應用能力.6.A【解析】

根據向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎題.7.A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.8.B【解析】

構造函數,判斷出的單調性和奇偶性,由此求得不等式的解集.【詳解】構造函數,由解得,所以的定義域為,且,所以為奇函數,而,所以在定義域上為增函數,且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數的單調性和奇偶性解不等式,屬于中檔題.9.C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.10.D【解析】

根據逆運算,倒推回求x的值,根據x的范圍取舍即可得選項.【詳解】因為,所以當,解得

,所以3是輸入的x的值;當時,解得,所以是輸入的x的值,所以輸入的x的值為

或3,故選:D.【點睛】本題考查了程序框圖的簡單應用,通過結果反求輸入的值,屬于基礎題.11.B【解析】

根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B【點睛】本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.12.C【解析】

,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,故的虛部為.故選:C.【點睛】本題考查復數的除法運算,考查學生的基本運算能力,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.90°【解析】

易得平面PAD,P點在與BA垂直的圓面內運動,顯然,PA是圓的直徑時,PA最長;將四棱錐補形為長方體,易得為球的直徑即可得到PD,從而求得四棱錐的體積.【詳解】如圖,由及,得平面PAD,即P點在與BA垂直的圓面內運動,易知,當P、、A三點共線時,PA達到最長,此時,PA是圓的直徑,則;又,所以平面ABCD,此時可將四棱錐補形為長方體,其體對角線為,底面邊長為2的正方形,易求出,高,故四棱錐體積.故答案為:(1)90°;(2).【點睛】本題四棱錐外接球有關的問題,考查學生空間想象與邏輯推理能力,是一道有難度的壓軸填空題.14.【解析】

觀察八卦中陰線和陽線的情況為3線全為陽線或全為陰線各一個,還有6個是1陰2陽和1陽2陰各3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。【詳解】八卦中陰線和陽線的情況為3線全為陽線的一個,全為陰線的一個,1陰2陽的3個,1陽2陰的3個。抽取的兩卦中共2陽4陰的所有可能情況是一卦全陰、另一卦2陽1陰,或兩卦全是1陽2陰。∴從8個卦中任取2卦,共有種可能,兩卦中共2陽4陰的情況有,所求概率為。故答案為:。【點睛】本題考查古典概型,解題關鍵是確定基本事件的個數。本題不能受八卦影響,我們關心的是八卦中陰線和陽線的條數,這樣才能正確地確定基本事件的個數。15.【解析】

根據組合的知識,結合組合數的公式,可得結果.【詳解】由題可知:項來源可以是:(1)取1個,4個(2)取2個,3個的系數為:故答案為:【點睛】本題主要考查組合的知識,熟悉二項式定理展開式中每一項的來源,實質上每個因式中各取一項的乘積,轉化為組合的知識,屬中檔題.16.【解析】

利用遞推關系,等比數列的通項公式即可求得結果.【詳解】因為,所以,因為是等比數列,所以數列的公比為1.又,所以當時,有.這說明在已知條件下,可以得到唯一的等比數列,所以,故答案為:.【點睛】該題考查的是有關數列的問題,涉及到的知識點有根據遞推公式求數列的通項公式,屬于簡單題目.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)..(2)最大距離為.【解析】

(1)直接利用極坐標方程和參數方程的公式計算得到答案.(2)曲線的參數方程為,設,計算點到直線的距離公式得到答案.【詳解】(1)由,得,則曲線的直角坐標方程為,即.直線的直角坐標方程為.(2)可知曲線的參數方程為(為參數),設,,則到直線的距離為,所以線段的中點到直線的最大距離為.【點睛】本題考查了極坐標方程,參數方程,距離的最值問題,意在考查學生的計算能力.18.(1)見解析;(2).【解析】

(1)分斜率為0,斜率不存在,斜率不為0三種情況討論,設的方程為,可求解得到,,可得到的距離為1,即得證;(2)表示的面積為,利用均值不等式,即得解.【詳解】(1)由題意,橢圓的焦點在x軸上,且,所以.所以橢圓的方程為.由點在直線上,且知的斜率必定存在,當的斜率為0時,,,于是,到的距離為1,直線與圓相切.當的斜率不為0時,設的方程為,與聯立得,所以,,從而.而,故的方程為,而在上,故,從而,于是.此時,到的距離為1,直線與圓相切.綜上,直線與圓相切.(2)由(1)知,的面積為,上式中,當且僅當等號成立,所以面積的最小值為1.此時,點在橢圓的長軸端點,為.不妨設為長軸左端點,則直線的方程為,代入橢圓的方程解得,即,,所以.【點睛】本題考查了直線和橢圓綜合,考查了直線和圓的位置關系判斷,面積的最值問題,考查了學生綜合分析,數學運算能力,屬于較難題.19.(1)證明見解析;(2)2【解析】

(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.20.(1)證明見解析;(2)【解析】

(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記21.(1).(2)【解析】

(1)設A的坐標為A(x0,y0),由題意可得圓心C的坐標,求出C到

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論