2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷含解析_第1頁
2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷含解析_第2頁
2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷含解析_第3頁
2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷含解析_第4頁
2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆蘇州市工業園區斜塘校中考數學對點突破模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在4×4的正方形網格中,每個小正方形的邊長都為1,△AOB的三個頂點都在格點上,現將△AOB繞點O逆時針旋轉90°后得到對應的△COD,則點A經過的路徑弧AC的長為()A. B.π C.2π D.3π2.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數表示超過標準質量的克數,負數表示不足標準質量的克數.僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+53.下列運算不正確的是A.a5+C.2a24.的一個有理化因式是()A. B. C. D.5.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.166.若,代數式的值是A.0 B. C.2 D.7.分別寫有數字0,﹣1,﹣2,1,3的五張卡片,除數字不同外其他均相同,從中任抽一張,那么抽到負數的概率是()A. B. C. D.8.如圖,正方形ABCD的邊長為3cm,動點P從B點出發以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發,以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是()A. B. C. D.9.正方形ABCD和正方形BPQR的面積分別為16、25,它們重疊的情形如圖所示,其中R點在AD上,CD與QR相交于S點,則四邊形RBCS的面積為()A.8 B. C. D.10.如圖,是由幾個大小相同的小立方塊所搭幾何體的俯視圖,其中小正方形中的數字表示在該位置的小立方塊的個數,則這個幾何體的主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計算tan260°﹣2sin30°﹣cos45°的結果為_____.12.一等腰三角形,底邊長是18厘米,底邊上的高是18厘米,現在沿底邊依次從下往上畫寬度均為3厘米的矩形,畫出的矩形是正方形時停止,則這個矩形是第_____個.13.反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,若點A(–3,y1),B(–1,y2),C(2,y3)都在該雙曲線上,則y1、y2、y3的大小關系為__________.(用“<”連接)14.有公共頂點A,B的正五邊形和正六邊形按如圖所示位置擺放,連接AC交正六邊形于點D,則∠ADE的度數為()A.144° B.84° C.74° D.54°15.計算:3﹣(﹣2)=____.16.二次函數的圖象如圖,若一元二次方程有實數根,則的最大值為___17.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點C.點F是圓O上異于B、C的動點,直線BF與l相交于點E,過點F作AF的垂線交直線BC于點D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點F在什么位置時,相應的點D位于線段BC的延長線上,且使BC=CD,請說明你的理由.19.(5分)如圖,已知BD是△ABC的角平分線,點E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.20.(8分)先化簡,再求值:先化簡÷(﹣x+1),然后從﹣2<x<的范圍內選取一個合適的整數作為x的值代入求值.21.(10分)如圖,已知點D在反比例函數y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數.22.(10分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數;(3)若EF=2,tanB=3,求CE?CG的值.23.(12分)已知A(﹣4,2)、B(n,﹣4)兩點是一次函數y=kx+b和反比例函數y=圖象的兩個交點.求一次函數和反比例函數的解析式;求△AOB的面積;觀察圖象,直接寫出不等式kx+b﹣>0的解集.24.(14分)如圖,小明在一塊平地上測山高,先在B處測得山頂A的仰角為30°,然后向山腳直行60米到達C處,再測得山頂A的仰角為45°,求山高AD的長度.(測角儀高度忽略不計)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

根據旋轉的性質和弧長公式解答即可.【詳解】解:∵將△AOB繞點O逆時針旋轉90°后得到對應的△COD,∴∠AOC=90°,∵OC=3,∴點A經過的路徑弧AC的長==,故選:A.【點睛】此題考查弧長計算,關鍵是根據旋轉的性質和弧長公式解答.2、B【解析】

求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【點睛】本題考查了正數和負數,掌握正數和負數的定義以及意義是解題的關鍵.3、B【解析】(-2a4、B【解析】

找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.5、D【解析】

由AB的垂直平分MN交AC于D,根據線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數形結合思想與轉化思想的應用.6、D【解析】

由可得,整體代入到原式即可得出答案.【詳解】解:,

則原式.

故選:D.【點睛】本題主要考查整式的化簡求值,熟練掌握整式的混合運算順序和法則及代數式的求值是解題的關鍵.7、B【解析】試題分析:根據概率的求法,找準兩點:①全部等可能情況的總數;②符合條件的情況數目;二者的比值就是其發生的概率.因此,從0,﹣1,﹣2,1,3中任抽一張,那么抽到負數的概率是.故選B.考點:概率.8、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數圖象.9、D【解析】

根據正方形的邊長,根據勾股定理求出AR,求出△ABR∽△DRS,求出DS,根據面積公式求出即可.【詳解】∵正方形ABCD的面積為16,正方形BPQR面積為25,∴正方形ABCD的邊長為4,正方形BPQR的邊長為5,在Rt△ABR中,AB=4,BR=5,由勾股定理得:AR=3,∵四邊形ABCD是正方形,∴∠A=∠D=∠BRQ=90°,∴∠ABR+∠ARB=90°,∠ARB+∠DRS=90°,∴∠ABR=∠DRS,∵∠A=∠D,∴△ABR∽△DRS,∴,∴,∴DS=,∴∴陰影部分的面積S=S正方形ABCD-S△ABR-S△RDS=4×4-×4×3-××1=,故選:D.【點睛】本題考查了正方形的性質,相似三角形的性質和判定,能求出△ABR和△RDS的面積是解此題的關鍵.10、C【解析】

由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,據此可得.【詳解】由俯視圖知該幾何體共2列,其中第1列前一排1個正方形、后1排2個正方形,第2列只有前排2個正方形,所以其主視圖為:故選C.【點睛】考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

分別算三角函數,再化簡即可.【詳解】解:原式=-2×-×=1.【點睛】本題考查掌握簡單三角函數值,較基礎.12、5【解析】

根據相似三角形的相似比求得頂點到這個正方形的長,再根據矩形的寬求得是第幾張.【詳解】解:已知剪得的紙條中有一張是正方形,則正方形中平行于底邊的邊是3,所以根據相似三角形的性質可設從頂點到這個正方形的線段為x,則318=x所以另一段長為18-3=15,因為15÷3=5,所以是第5張.故答案為:5.【點睛】本題主要考查了相相似三角形的判定和性質,關鍵是根據似三角形的性質及等腰三角形的性質的綜合運用解答.13、y2<y1<y1.【解析】

先根據反比例函數的增減性判斷出2-m的符號,再根據反比例函數的性質判斷出此函數圖象所在的象限,由各點橫坐標的值進行判斷即可.【詳解】∵反比例函數y=的圖象是雙曲線,在每一個象限內,y隨x的增大而減小,∴2?m>0,∴此函數的圖象在一、三象限,∵?1<?1<0,∴0>y1>y2,∵2>0,∴y1>0,∴y2<y1<y1.故答案為y2<y1<y1.【點睛】本題考查的知識點是反比例函數圖像上點的坐標特征,解題的關鍵是熟練的掌握列反比例函數圖像上點的坐標特征.14、B【解析】正五邊形的內角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六邊形的內角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故選B.15、2+2【解析】

根據平面向量的加法法則計算即可.【詳解】3﹣(﹣2)=3﹣+2=2+2,故答案為:2+2,【點睛】本題考查平面向量,熟練掌握平面向量的加法法則是解題的關鍵.16、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,17、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.三、解答題(共7小題,滿分69分)18、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據相似三角形的對應邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據相似三角形的對應邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數,則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.【點睛】考查了相似三角形的判定與性質,圓的切線的性質,圓周角的性質以及三角函數的性質等知識.此題綜合性很強,解題的關鍵是方程思想與數形結合思想的應用.19、證明見解析.【解析】試題分析:先利用平行四邊形性質證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考點:平行四邊形的判定與性質.20、﹣,﹣.【解析】

根據分式的減法和除法可以化簡題目中的式子,然后在-2<x<中選取一個使得原分式有意義的整數值代入化簡后的式子即可求出最后答案,值得注意的是,本題答案不唯一,x的值可以取-2、2中的任意一個.【詳解】原式====,∵-2<x<(x為整數)且分式要有意義,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以選取x=2時,此時原式=-.【點睛】本題主要考查了求代數式的值,解本題的要點在于在化解過程中,求得x的取值范圍,從而再選取x=2得到答案.21、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數的定義可求得OC的長,可求得C、D點坐標,再利用待定系數法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.22、(1)見解析;(2)70°;(3)1.【解析】

(1)先根據等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數,相似三角形的判定和性質,圓內

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論