2024屆四川師大七中學九中學重點中學中考四模數學試題含解析_第1頁
2024屆四川師大七中學九中學重點中學中考四模數學試題含解析_第2頁
2024屆四川師大七中學九中學重點中學中考四模數學試題含解析_第3頁
2024屆四川師大七中學九中學重點中學中考四模數學試題含解析_第4頁
2024屆四川師大七中學九中學重點中學中考四模數學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆四川師大七中學九中學重點中學中考四模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個2.如圖,平行于x軸的直線與函數,的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.3.在平面直角坐標系中,把直線y=x向左平移一個單位長度后,所得直線的解析式為()A.y=x+1B.y=x-1C.y=xD.y=x-24.某同學將自己7次體育測試成績(單位:分)繪制成折線統計圖,則該同學7次測試成績的眾數和中位數分別是()A.50和48 B.50和47 C.48和48 D.48和435.如圖,下列圖形都是由面積為1的正方形按一定的規律組成,其中,第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的正方形有5個,第(3)個圖形中面積為1的正方形有9個,…,按此規律.則第(6)個圖形中面積為1的正方形的個數為()A.20 B.27 C.35 D.406.運用乘法公式計算(4+x)(4﹣x)的結果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x27.如圖在△ABC中,AC=BC,過點C作CD⊥AB,垂足為點D,過D作DE∥BC交AC于點E,若BD=6,AE=5,則sin∠EDC的值為()A. B. C. D.8.如圖,點A、B、C、D在⊙O上,∠AOC=120°,點B是弧AC的中點,則∠D的度數是()A.60° B.35° C.30.5° D.30°9.如圖,AB∥ED,CD=BF,若△ABC≌△EDF,則還需要補充的條件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E10.觀察下面“品”字形中各數之間的規律,根據觀察到的規律得出a的值為()A.23 B.75 C.77 D.13911.由一些大小相同的小正方體搭成的幾何體的俯視圖如圖所示,其中正方形中的數字表示該位置上的小正方體的個數,那么該幾何體的主視圖是()A. B. C. D.12.某學習小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如下折線統計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數C.先后兩次擲一枚質地均勻的硬幣,兩次都出現反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點B,C,E在同一條直線上,點D在CG上,BC=1,CE=3,H是AF的中點,則CH的長為________.14.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.15.如圖,某城市的電視塔AB坐落在湖邊,數學老師帶領學生隔湖測量電視塔AB的高度,在點M處測得塔尖點A的仰角∠AMB為22.5°,沿射線MB方向前進200米到達湖邊點N處,測得塔尖點A在湖中的倒影A′的俯角∠A′NB為45°,則電視塔AB的高度為______米(結果保留根號).16.據統計,今年無錫黿頭渚“櫻花節”活動期間入園賞櫻人數約803萬人次,用科學記數法可表示為_____人次.17.已知二次函數y=ax2+bx+c(a≠0)中,函數值y與自變量x的部分對應值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…則關于x的一元二次方程ax2+bx+c=-2的根是______.18.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算.20.(6分)已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設DE=x.(1)用含x的代數式表示線段CF的長;(2)如果把△CAE的周長記作C△CAE,△BAF的周長記作C△BAF,設=y,求y關于x的函數關系式,并寫出它的定義域;(3)當∠ABE的正切值是時,求AB的長.21.(6分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數.22.(8分)(1)計算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.23.(8分)如圖,平面直角坐標系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上且AB=12cm(1)若OB=6cm.①求點C的坐標;②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離;(2)點C與點O的距離的最大值是多少cm.24.(10分)如圖,平面直角坐標系內,小正方形網格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1;(2)畫出將△ABC繞原點O順時針方向旋轉90°得到△A2B2O;(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.25.(10分)如圖,拋物線y=ax2+bx﹣2經過點A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點D是直線AC上方的拋物線上的一點,求△DCA面積的最大值;(3)P是拋物線上一動點,過P作PM⊥x軸,垂足為M,是否存在P點,使得以A,P,M為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.26.(12分)如圖,在平面直角坐標系中,一次函數與反比例函數的圖像交于點和點,且經過點.求反比例函數和一次函數的表達式;求當時自變量的取值范圍.27.(12分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.2、A【解析】【分析】設,,根據反比例函數圖象上點的坐標特征得出,根據三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數圖象上點的坐標特征,三角形的面積,熟知點在函數的圖象上,則點的坐標滿足函數的解析式是解題的關鍵.3、A【解析】向左平移一個單位長度后解析式為:y=x+1.故選A.點睛:掌握一次函數的平移.4、A【解析】

由折線統計圖,可得該同學7次體育測試成績,進而求出眾數和中位數即可.【詳解】由折線統計圖,得:42,43,47,48,49,50,50,7次測試成績的眾數為50,中位數為48,故選:A.【點睛】本題考查了眾數和中位數,解題的關鍵是利用折線統計圖獲取有效的信息.5、B【解析】試題解析:第(1)個圖形中面積為1的正方形有2個,第(2)個圖形中面積為1的圖象有2+3=5個,第(3)個圖形中面積為1的正方形有2+3+4=9個,…,按此規律,第n個圖形中面積為1的正方形有2+3+4+…+(n+1)=個,則第(6)個圖形中面積為1的正方形的個數為2+3+4+5+6+7=27個.故選B.考點:規律型:圖形變化類.6、B【解析】

根據平方差公式計算即可得解.【詳解】,故選:B.【點睛】本題主要考查了整式的乘法公式,熟練掌握平方差公式的運算是解決本題的關鍵.7、A【解析】

由等腰三角形三線合一的性質得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根據正弦函數的概念求解可得.【詳解】∵△ABC中,AC=BC,過點C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=,故選:A.【點睛】本題主要考查解直角三角形,解題的關鍵是熟練掌握等腰三角形三線合一的性質和平行線的性質及直角三角形的性質等知識點.8、D【解析】

根據圓心角、弧、弦的關系定理得到∠AOB=∠AOC,再根據圓周角定理即可解答.【詳解】連接OB,∵點B是弧的中點,∴∠AOB=∠AOC=60°,由圓周角定理得,∠D=∠AOB=30°,故選D.【點睛】此題考查了圓心角、弧、弦的關系定理,解題關鍵在于利用好圓周角定理.9、C【解析】

根據平行線性質和全等三角形的判定定理逐個分析.【詳解】由,得∠B=∠D,因為,若≌,則還需要補充的條件可以是:AB=DE,或∠E=∠A,∠EFD=∠ACB,故選C【點睛】本題考核知識點:全等三角形的判定.解題關鍵點:熟記全等三角形判定定理.10、B【解析】

由圖可知:上邊的數與左邊的數的和正好等于右邊的數,上邊的數為連續的奇數,左邊的數為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數為連續的奇數1,3,5,7,9,11,左邊的數為21,22,23,…,∴b=26=1.∵上邊的數與左邊的數的和正好等于右邊的數,∴a=11+1=2.故選B.【點睛】本題考查了數字變化規律,觀察出上邊的數與左邊的數的和正好等于右邊的數是解題的關鍵.11、A【解析】

由三視圖的俯視圖,從左到右依次找到最高層數,再由主視圖和俯視圖之間的關系可知,最高層高度即為主視圖高度.【詳解】解:幾何體從左到右的最高層數依次為1,2,3,所以主視圖從左到右的層數應該為1,2,3,故選A.【點睛】本題考查了三視圖的簡單性質,屬于簡單題,熟悉三視圖的概念,主視圖和俯視圖之間的關系是解題關鍵.12、D【解析】

根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

連接AC、CF,GE,根據菱形性質求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對角線,∴,∴,∴∵==,∴在,又∵H是AF的中點∴.【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,菱形的性質,勾股定理,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.14、1【解析】

根據函數值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征,利用函數值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.15、.【解析】解:如圖,連接AN,由題意知,BM⊥AA',BA=BA',∴AN=A'N,∴∠ANB=∠A'NB=45°,∵∠AMB=22.5°,∴∠MAN=∠ANB﹣∠AMB=22.5°=∠AMN,∴AN=MN=200米,在Rt△ABN中,∠ANB=45°,∴AB=AN=(米),故答案為.點睛:此題是解直角三角形的應用﹣﹣﹣仰角和俯角,主要考查了垂直平分線的性質,等腰三角形的性質,解本題的關鍵是求出∠ANB=45°.16、8.03×106【解析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.803萬=.17、x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函數值都是﹣5,相等,∴二次函數的對稱軸為直線x=﹣1.∵x=﹣4時,y=﹣1,∴x=2時,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案為x1=﹣4,x1=2.點睛:本題考查了二次函數的性質,主要利用了二次函數的對稱性,讀懂圖表信息,求出對稱軸解析式是解題的關鍵.18、1.【解析】

如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質、解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】分析:先計算,再做除法,結果化為整式或最簡分式.詳解:.點睛:本題考查了分式的混合運算.解題過程中注意運算順序.解決本題亦可先把除法轉化成乘法,利用乘法對加法的分配律后再求和.20、(1)CF=;(2)y=(0<x<2);(3)AB=2.5.【解析】

試題分析:(1)根據等腰直角三角形的性質,求得∠DAC=∠ACD=45°,進而根據兩角對應相等的兩三角形相似,可得△CEF∽△CAE,然后根據相似三角形的性質和勾股定理可求解;(2)根據相似三角形的判定與性質,由三角形的周長比可求解;(3)由(2)中的相似三角形的對應邊成比例,可求出AB的關系,然后可由∠ABE的正切值求解.試題解析:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根據勾股定理得,CE=,∵CA=,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE=,∴x=,∴AB=x+2=.21、(1)證明見解析;(2).【解析】試題分析:(1)根據等邊三角形的性質根據SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內角的關系就可以得出結論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BFD=60°.22、(1);(1)1.【解析】

(1)先計算負整數指數冪、化簡二次根式、代入三角函數值、計算零指數冪,再計算乘法和加減運算可得;(1)先根據整式的混合運算順序和運算法則化簡原式,再利用完全平方公式因式分解,最后將a?b的值整體代入計算可得.【詳解】(1)原式=4+1﹣8×﹣1=4+1﹣4﹣1=1﹣1;(1)原式=a1﹣4a+4+b1﹣1ab+4a﹣4=a1﹣1ab+b1=(a﹣b)1,當a﹣b=時,原式=()1=1.【點睛】本題主要考查實數和整式的混合運算,解題的關鍵是掌握實數與整式的混合運算順序和運算法則及完全平方公式因式分解的能力.23、(1)①點C的坐標為(-3,9);②滑動的距離為6(﹣1)cm;(2)OC最大值1cm.【解析】試題分析:(1)①過點C作y軸的垂線,垂足為D,根據30°的直角三角形的性質解答即可;②設點A向右滑動的距離為x,根據題意得點B向上滑動的距離也為x,根據銳角三角函數和勾股定理解答即可;(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質解答即可.試題解析:解:(1)①過點C作y軸的垂線,垂足為D,如圖1:在Rt△AOB中,AB=1,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以點C的坐標為(﹣3,9);②設點A向右滑動的距離為x,根據題意得點B向上滑動的距離也為x,如圖2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑動的距離為6(﹣1);(2)設點C的坐標為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴當|x|取最大值時,即C到y軸距離最大時,OC2有最大值,即OC取最大值,如圖,即當C'B'旋轉到與y軸垂直時.此時OC=1,故答案為1.考點:相似三角形綜合題.24、(1)作圖見解析;(2)作圖見解析;(3)P(,0).【解析】

(1)分別將點A、B、C向上平移1個單位,再向右平移5個單位,然后順次連接;(2)根據網格結構找出點A、B、C以點O為旋轉中心順時針旋轉90°后的對應點,然后順次連接即可;(3)利用最短路徑問題解決,首先作A1點關于x軸的對稱點A3,再連接A2A3與x軸的交點即為所求.【詳解】解:(1)如圖所示,△A1B1C1為所求做的三角形;(2)如圖所示,△A2B2O為所求做的三角形;(3)∵A2坐標為(3,1),A3坐標為(4,﹣4),∴A2A3所在直線的解析式為:y=﹣5x+16,令y=0,則x=,∴P點的坐標(,0).考點:平移變換;旋轉變換;軸對稱-最短路線問題.25、(1)y=﹣x2+x﹣2;(2)當t=2時,△DAC面積最大為4;(3)符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數解析式,利用二次函數性質求出S的最大值即可;(3)存在P點,使得以A,P,M為頂點的三角形與△OAC相似,分當1<m<4時;當m<1時;當m>4時三種情況求出點P坐標即可.【詳解】(1)∵該拋物線過點A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設D點的橫坐標為t(0<t<4),則D點的縱坐標為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點的坐標為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當t=2時,△DAC面積最大為4;(3)存在,如圖,設P點的橫坐標為m,則P點的縱坐標為﹣m2+m﹣2,當1<m<4時,AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當==2時,△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時P(2,1);②當==時,△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當1<m<4時,P(2,1);類似地可求出當m>4時,P(5,﹣2);當m<1時,P(﹣3,﹣14),綜上所述,符合條件的點P為(2,1)或(5,﹣2)或(﹣3,﹣14).【點睛】本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標系里求三角形的面積及其最大值問題,要求會用字母代替長度,坐標,會對代數式進行合理變形,解決相似三角形問題時要注意分類討論.26、(1),;(2)或.【解析】

(1)把點A坐標代入可求出m的值即可得反比例函數解析式;把點A、點C代入可求出k、b的值,即可得一次函數解析式;(2)聯立一次函數和反比例函數解析式可求出點B的坐標,根據圖象,求出一次函數圖象在反比例函數圖象的上方時,x的取值范圍即可.【詳解】(1)把代入得.∴反比例函數的表達式為把和代入得,解得∴一次函數的表達式為.(2)由得∴當或時,.【點睛】本題考查了一次函數和反比例函數的交點問題,解決問題的關鍵是掌握待定系數法求函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論