




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西壯族自治區河池市重點名校2024屆中考數學適應性模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米2.如圖,∠AOB=45°,OC是∠AOB的角平分線,PM⊥OB,垂足為點M,PN∥OB,PN與OA相交于點N,那么的值等于()A. B. C. D.3.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.464.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+55.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是()A.36° B.54° C.72° D.108°6.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數為()A.30° B.40° C.50° D.60°7.已知一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.28.下列是我國四座城市的地鐵標志圖,其中是中心對稱圖形的是()A. B. C. D.9.如圖所示的正方體的展開圖是()A. B. C. D.10.下列運算正確的是()A.(a2)3=a5 B.(a-b)2=a2-b2 C.3=3 D.=-3二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.12.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數值是_____.13.不等式的解集是________________14.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.15.關于的一元二次方程有兩個不相等的實數根,請你寫出一個滿足條件的值__________.16.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數y=(k為常數)的圖象上,則y1、y2、y3的大小關系為________.17.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側面積為_____.三、解答題(共7小題,滿分69分)18.(10分)小明、小剛和小紅打算各自隨機選擇本周日的上午或下午去揚州馬可波羅花世界游玩.小明和小剛都在本周日上午去游玩的概率為________;求他們三人在同一個半天去游玩的概率.19.(5分)如圖,AB是⊙O的直徑,弦DE交AB于點F,⊙O的切線BC與AD的延長線交于點C,連接AE.(1)試判斷∠AED與∠C的數量關系,并說明理由;(2)若AD=3,∠C=60°,點E是半圓AB的中點,則線段AE的長為.20.(8分)計算:﹣(﹣2016)0+|﹣3|﹣4cos45°.21.(10分)已知,如圖直線l1的解析式為y=x+1,直線l2的解析式為y=ax+b(a≠0);這兩個圖象交于y軸上一點C,直線l2與x軸的交點B(2,0)(1)求a、b的值;(2)過動點Q(n,0)且垂直于x軸的直線與l1、l2分別交于點M、N都位于x軸上方時,求n的取值范圍;(3)動點P從點B出發沿x軸以每秒1個單位長的速度向左移動,設移動時間為t秒,當△PAC為等腰三角形時,直接寫出t的值.22.(10分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數.23.(12分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.24.(14分)如圖,AB是的直徑,AF是切線,CD是垂直于AB的弦,垂足為點E,過點C作DA的平行線與AF相交于點F,已知,.求AD的長;求證:FC是的切線.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.2、B【解析】
過點P作PE⊥OA于點E,根據角平分線上的點到角的兩邊的距離相等可得PE=PM,再根據兩直線平行,內錯角相等可得∠POM=∠OPN,根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠PNE=∠AOB,再根據直角三角形解答.【詳解】如圖,過點P作PE⊥OA于點E,∵OP是∠AOB的平分線,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴=.故選:B.【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質,直角三角形的性質,以及三角形的一個外角等于與它不相鄰的兩個內角的和,作輔助線構造直角三角形是解題的關鍵.3、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.4、A【解析】
直接根據“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數的圖象與幾何變換,熟知函數圖象平移的法則是解答本題的關鍵.5、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是=72度,故選C.6、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.7、C【解析】
根據題意得出旋轉后的函數解析式為y=-x-1,然后根據解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數解析式為y=﹣x﹣1,在一次函數y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數y=﹣x+2與x軸交點為(4,1).一次函數y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數圖象與幾何變換,解題的關鍵是求出旋轉后的函數解析式.本題屬于基礎題,難度不大.8、D【解析】
根據中心對稱圖形的定義解答即可.【詳解】選項A不是中心對稱圖形;選項B不是中心對稱圖形;選項C不是中心對稱圖形;選項D是中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形的定義,熟練運用中心對稱圖形的定義是解決問題的關鍵.9、A【解析】
有些立體圖形是由一些平面圖形圍成的,將它們的表面適當的剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖.根據立體圖形表面的圖形相對位置可以判斷.【詳解】把各個展開圖折回立方體,根據三個特殊圖案的相對位置關系,可知只有選項A正確.故選A【點睛】本題考核知識點:長方體表面展開圖.解題關鍵點:把展開圖折回立方體再觀察.10、D【解析】試題分析:A、原式=a6,錯誤;B、原式=a2﹣2ab+b2,錯誤;C、原式不能合并,錯誤;D、原式=﹣3,正確,故選D考點:完全平方公式;合并同類項;同底數冪的乘法;平方差公式.二、填空題(共7小題,每小題3分,滿分21分)11、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.12、2,3,1.【解析】分析:根據題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數值為2、3、1.點睛:本題主要考查的就是菱形的性質以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.13、【解析】
首先去分母進而解出不等式即可.【詳解】去分母得,1-2x>15移項得,-2x>15-1合并同類項得,-2x>14系數化為1,得x<-7.故答案為x<-7.【點睛】此題考查了解一元一次不等式,解不等式要依據不等式的基本性質:(1)不等式的兩邊同時加上或減去同一個數或整式不等號的方向不變;(2)不等式的兩邊同時乘以或除以同一個正數不等號的方向不變;(3)不等式的兩邊同時乘以或除以同一個負數不等號的方向改變.14、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.15、1【解析】
先根據根的判別式求出c的取值范圍,然后在范圍內隨便取一個值即可.【詳解】解得所以可以取故答案為:1.【點睛】本題主要考查根的判別式,掌握根的判別式與根個數的關系是解題的關鍵.16、y2<y1<y2【解析】分析:設t=k2﹣2k+2,配方后可得出t>1,利用反比例函數圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結論.詳解:設t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數y=(k為常數)的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數圖象上點的坐標特征,利用反比例函數圖象上點的坐標特征求出y1、y2、y2的值是解題的關鍵.17、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據圓錐的側面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側面積的計算方法.解題的關鍵是熟記圓錐的側面展開扇形的面積計算方法.三、解答題(共7小題,滿分69分)18、(1);(2)【解析】
(1)根據題意,畫樹狀圖列出三人隨機選擇上午或下午去游玩的所有等可能結果,找到小明和小剛都在本周日上午去游玩的結果,根據概率公式計算可得;(2)由(1)中樹狀圖,找到三人在同一個半天去游玩的結果,根據概率公式計算可得.【詳解】解:(1)根據題意,畫樹狀圖如圖:由樹狀圖可知,三人隨機選擇本周日的上午或下午去游玩共有8種等可能結果,其中小明和小剛都在本周日上午去游玩的結果有(上,上,上)、(上,上,下)2種,∴小明和小剛都在本周日上午去游玩的概率為=;(2)由(1)中樹狀圖可知,他們三人在同一個半天去游玩的結果有(上,上,上)、(下,下,下)這2種,∴他們三人在同一個半天去游玩的概率為=.答:他們三人在同一個半天去游玩的概率是.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.19、(1)∠AED=∠C,理由見解析;(2)【解析】
(1)根據切線的性質和圓周角定理解答即可;(2)根據勾股定理和三角函數進行解答即可.【詳解】(1)∠AED=∠C,證明如下:連接BD,可得∠ADB=90°,∴∠C+∠DBC=90°,∵CB是⊙O的切線,∴∠CBA=90°,∴∠ABD+∠DBC=90°,∴∠ABD=∠C,∵∠AEB=∠ABD,∴∠AED=∠C,(2)連接BE,∴∠AEB=90°,∵∠C=60°,∴∠CAB=30°,在Rt△DAB中,AD=3,∠ADB=90°,∴cos∠DAB=,解得:AB=2,∵E是半圓AB的中點,∴AE=BE,∵∠AEB=90°,∴∠BAE=45°,在Rt△AEB中,AB=2,∠ADB=90°,∴cos∠EAB=,解得:AE=.故答案為【點睛】此題考查了切線的性質、直角三角形的性質以及圓周角定理.此題難度適中,注意掌握數形結合思想的應用,注意掌握輔助線的作法.20、1.【解析】
根據二次根式性質,零指數冪法則,絕對值的代數意義,以及特殊角的三角函數值依次計算后合并即可.【詳解】解:原式=1﹣1+3﹣4×=1.【點睛】本題考查實數的運算及特殊角三角形函數值.21、(1)a=﹣;(2)﹣1<n<2;(3)滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.【解析】試題分析:(1)、根據題意求出點C的坐標,然后將點C和點B的坐標代入直線解析式求出a和b的值;(2)、根據題意可知點Q在點A和點B之間,從而求出n的取值范圍;(3)、本題需要分幾種情況分別來進行計算,即AC=P1C,P2A=P2C和AP3=AC三種情況分別進行計算得出t的值.試題解析:(1)、解:∵點C是直線l1:y=x+1與軸的交點,∴C(0,1),∵點C在直線l2上,∴b=1,∴直線l2的解析式為y=ax+1,∵點B在直線l2上,∴2a+1=0,∴a=﹣;(2)、解:由(1)知,l1的解析式為y=x+1,令y=0,∴x=﹣1,由圖象知,點Q在點A,B之間,∴﹣1<n<2(3)、解:如圖,∵△PAC是等腰三角形,∴①點x軸正半軸上時,當AC=P1C時,∵CO⊥x軸,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②當P2A=P2C時,易知點P2與O重合,∴BP2=OB=2,∴2÷1=2s,③點P在x軸負半軸時,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:滿足條件的時間t為1s,2s,或(3+)或(3﹣)s.點睛:本題主要考查的就是一次函數的性質、等腰三角形的性質和動點問題,解決這個問題的關鍵就是要能夠根據題意進行分類討論,從而得出答案.在解決一次函數和等腰三角形問題時,我們一定要根據等腰三角形的性質來進行分類討論,可以利用圓規來作出圖形,然后根據實際題目來求出答案.22、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網絡環境下的圖書館服務能力考查試題及答案
- 激光系統升級的必要性試題及答案
- 小高考模擬卷試題及答案
- 深入解析光電工程師考試試題與答案
- 系統規劃與管理師考試常用工具的使用指引試題及答案
- 突破系統架構設計師考試的關鍵技巧試題及答案
- 自擬題目試題及答案大全
- 育嬰師發展支持試題及答案
- 肇慶教師面試題目及答案
- 精心設計的護士資格證試題及答案
- 鐵路少年-練習及答案
- 嬰幼兒入戶指導方案
- 針灸推拿學教學課件
- 優化溝通效果提升業務價值
- 泌尿外科手術分級
- 華潤電力測評題庫及答案
- 《胎兒脊柱異常的超聲診斷》課件
- (完整)中小學教師職稱評定答辯題
- 精神專科醫院護理查房方案
- 學生考試成績評價分析表模板
- 高三數學復習備考策略
評論
0/150
提交評論