




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省內江市重點中學高三年級(下)期末調研考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.函數的圖象的大致形狀是()A. B. C. D.3.雙曲線x2a2A.y=±2x B.y=±3x4.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.5.已知二次函數的部分圖象如圖所示,則函數的零點所在區間為()A. B. C. D.6.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積等于()cm3A. B. C. D.7.已知,,,若,則()A. B. C. D.8.若的二項式展開式中二項式系數的和為32,則正整數的值為()A.7 B.6 C.5 D.49.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.10.集合的真子集的個數是()A. B. C. D.11.已知拋物線經過點,焦點為,則直線的斜率為()A. B. C. D.12.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為__________.14.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.15.已知,,且,則的最小值是______.16.已知函數,若對于任意正實數,均存在以為三邊邊長的三角形,則實數k的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若關于的不等式在上恒成立,求實數的取值范圍.18.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數滿足.證明:.19.(12分)管道清潔棒是通過在管道內釋放清潔劑來清潔管道內壁的工具,現欲用清潔棒清潔一個如圖1所示的圓管直角彎頭的內壁,其縱截面如圖2所示,一根長度為的清潔棒在彎頭內恰好處于位置(圖中給出的數據是圓管內壁直徑大小,).(1)請用角表示清潔棒的長;(2)若想讓清潔棒通過該彎頭,清潔下一段圓管,求能通過該彎頭的清潔棒的最大長度.20.(12分)如圖,在三棱錐中,平面平面,,.點,,分別為線段,,的中點,點是線段的中點.(1)求證:平面.(2)判斷與平面的位置關系,并證明.21.(12分)已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.22.(10分)某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下通過日常監控得知,生產線生產的產品為合格品的概率分別為和.(1)從,生產線上各抽檢一件產品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產線的不合格產品返工后每件產品可分別挽回損失元和元.若從兩條生產線上各隨機抽檢件產品,以挽回損失的平均數為判斷依據,估計哪條生產線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現從,生產線的最終合格品中各隨機抽取件進行檢測,結果統計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估算該廠產量件時利潤的期望值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.2、B【解析】
根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.3、A【解析】分析:根據離心率得a,c關系,進而得a,b關系,再根據雙曲線方程求漸近線方程,得結果.詳解:∵e=因為漸近線方程為y=±bax點睛:已知雙曲線方程x2a24、D【解析】
作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.5、B【解析】由函數f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區間是(0,1),故選B.6、D【解析】解:根據幾何體的三視圖知,該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據,計算它的體積為:V=V三棱柱+V半圓柱=×2×2×1+?π?12×1=(6+1.5π)cm1.故答案為6+1.5π.點睛:根據幾何體的三視圖知該幾何體是三棱柱與半圓柱體的組合體,結合圖中數據計算它的體積即可.7、B【解析】
由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.8、C【解析】
由二項式系數性質,的展開式中所有二項式系數和為計算.【詳解】的二項展開式中二項式系數和為,.故選:C.【點睛】本題考查二項式系數的性質,掌握二項式系數性質是解題關鍵.9、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質,考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.10、C【解析】
根據含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.11、A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.12、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題14、【解析】
設,利用正弦定理,根據,得到①,再利用余弦定理得②,①②平方相加得:,轉化為有解問題求解.【詳解】設,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設,在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應用,還考查了運算求解的能力,屬于難題.15、8【解析】
由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.【點睛】本題考查基本不等式求和的最小值,整體代入法,屬于基礎題.16、【解析】
根據三角形三邊關系可知對任意的恒成立,將的解析式用分離常數法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據函數的單調性求出函數值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數,都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數在上單調遞減,則;當,即時,,當,即時,該函數在上單調遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數范圍,考查三角形的構成條件,考查利用函數單調性求函數值域,考查分類討論思想與轉化思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)利用絕對值的幾何意義,將不等式,轉化為不等式或或求解.(2)根據-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價于或或,解得:或,∴不等式的解集為或.(2)因為-2在R上恒成立,而,所以,解得,所以實數的取值范圍是.【點睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運算求解的能力,屬于中檔題.18、(1)或;(2)見解析【解析】
(1)根據,利用零點分段法解不等式,或作出函數的圖像,利用函數的圖像解不等式;(2)由(1)作出的函數圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調遞減,在上單調遞增,所以,正實數滿足,則,即,(當且僅當即時取等號)故,得證.【點睛】此題考查了絕對值不等式的解法,絕對值不等式的性質和均值不等式的運用,考查了分類討論思想和轉化思想,屬于中檔題.19、(1);(2).【解析】
(1)過作的垂線,垂足為,易得,進一步可得;(2)利用導數求得最大值即可.【詳解】(1)如圖,過作的垂線,垂足為,在直角中,,,所以,同理,.(2)設,則,令,則,即.設,且,則當時,,所以單調遞減;當時,,所以單調遞增,所以當時,取得極小值,所以.因為,所以,又,所以,又,所以,所以,所以,所以能通過此鋼管的鐵棒最大長度為.【點睛】本題考查導數在實際問題中的應用,考查學生的數學運算求解能力,是一道中檔題.20、(1)見解析(2)平面.見解析【解析】
(1)要證平面,只需證明,,即可求得答案;(2)連接交于點,連接,根據已知條件求證,即可判斷與平面的位置關系,進而求得答案.【詳解】(1),為邊的中點,,平面平面,平面平面,平面,平面,,在內,,為所在邊的中點,,又,,平面.(2)判斷可知,平面,證明如下:連接交于點,連接.、、分別為邊、、的中點,.又是的重心,,,平面,平面,平面.【點睛】本題主要考查了求證線面垂直和線面平行,解題關鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.21、(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數方程中的參數即可得到其普通方程;將曲線極坐標方程化為,根據極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數方程代入曲線的直角坐標方程,根據參數的幾何意義可知,利用韋達定理求得結果.【詳解】(1)由直線參數方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數方程代入曲線的直角坐標方程,整理可得:設兩點對應的參數分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數方程與普通方程的互化、直線參數方程中參數的幾何意義的應用;求解距離之和的關鍵是能夠明確直線參數方程中參數的幾何意義,利用韋達定理來進行求解.22、(1)(2)①生產線上挽回的損失較多.②見解析【解析】
(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數學期望的性質給出結論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025貴州師范大學輔導員考試試題及答案
- 2025贛州職業技術學院輔導員考試試題及答案
- 夏季溺水急救措施
- 西安聯豐迅聲信息科技有限公司招聘筆試題庫2025
- 手衛生在產科的重要性
- 2025年咨詢工程師職業考試題及答案詳解
- 綠城誠園戶型設計
- 電擊傷急救知識
- 2025年醫學影像學研究生入學考試試卷及答案
- 2025年藝術設計專業研究生入學考試試卷及答案
- T∕CACM 1085-2018 中醫治未病技術操作規范 調神益智針法預防血管性認知障礙
- 國家開放大學《園林規劃設計》形考任務1-4參考答案
- 案例研究-海洋水產養殖(海洋牧場及漁業綜合體)項目投資方案可行性
- 2025屆河南省許昌市名校高三下學期第二次模擬考試英語試題(原卷版+解析版)
- 2025中國儲備糧管理集團有限公司貴州分公司招聘22人筆試參考題庫附帶答案詳解
- 蛛網膜下腔出血介入術后護理
- 2025年臨床執業醫師考試的院前急救知識試題及答案
- 數據治理架構試題及答案
- 會考地理綜合題答題模板+簡答題歸納-2025年會考地理知識點梳理
- 廣州中小企業招工難問題研究
- 水泵工初級考試題及答案
評論
0/150
提交評論