山東滕州實驗高中2025年開學摸底考試高三數學試題_第1頁
山東滕州實驗高中2025年開學摸底考試高三數學試題_第2頁
山東滕州實驗高中2025年開學摸底考試高三數學試題_第3頁
山東滕州實驗高中2025年開學摸底考試高三數學試題_第4頁
山東滕州實驗高中2025年開學摸底考試高三數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東滕州實驗高中2025年開學摸底考試高三數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③2.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.3.的展開式中有理項有()A.項 B.項 C.項 D.項4.歐拉公式為,(虛數單位)是由瑞士著名數學家歐拉發現的,它將指數函數的定義域擴大到復數,建立了三角函數和指數函數的關系,它在復變函數論里非常重要,被譽為“數學中的天橋”.根據歐拉公式可知,表示的復數位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.若復數,則()A. B. C. D.206.已知復數滿足,且,則()A.3 B. C. D.7.若,,則的值為()A. B. C. D.8.已知是第二象限的角,,則()A. B. C. D.9.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.10.是拋物線上一點,是圓關于直線的對稱圓上的一點,則最小值是()A. B. C. D.11.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態分布(),若,則D.設是實數,“”是“”的充分不必要條件12.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若方程的解為,(),則_______;_______.14.《九章算術》第七章“盈不足”中第一題:“今有共買物,人出八,盈三錢;人出七,不足四,問人數物價各幾何?”借用我們現在的說法可以表述為:有幾個人合買一件物品,每人出8元,則付完錢后還多3元;若每人出7元,則還差4元才夠付款.問他們的人數和物品價格?答:一共有_____人;所合買的物品價格為_______元.15.(5分)已知,且,則的值是____________.16.設函數,若對于任意的,∈[2,,≠,不等式恒成立,則實數a的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某客戶準備在家中安裝一套凈水系統,該系統為二級過濾,使用壽命為十年如圖所示兩個二級過濾器采用并聯安裝,再與一級過濾器串聯安裝.其中每一級過濾都由核心部件濾芯來實現在使用過程中,一級濾芯和二級濾芯都需要不定期更換(每個濾芯是否需要更換相互獨立).若客戶在安裝凈水系統的同時購買濾芯,則一級濾芯每個160元,二級濾芯每個80元.若客戶在使用過程中單獨購買濾芯則一級濾芯每個400元,二級濾芯每個200元.現需決策安裝凈水系統的同時購買濾芯的數量,為此參考了根據100套該款凈水系統在十年使用期內更換濾芯的相關數據制成的圖表,其中表1是根據100個一級過濾器更換的濾芯個數制成的頻數分布表,圖2是根據200個二級過濾器更換的濾芯個數制成的條形圖.表1:一級濾芯更換頻數分布表一級濾芯更換的個數89頻數6040圖2:二級濾芯更換頻數條形圖以100個一級過濾器更換濾芯的頻率代替1個一級過濾器更換濾芯發生的概率,以200個二級過濾器更換濾芯的頻率代替1個二級過濾器更換濾芯發生的概率.(1)求一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16的概率;(2)記表示該客戶的凈水系統在使用期內需要更換的二級濾芯總數,求的分布列及數學期望;(3)記分別表示該客戶在安裝凈水系統的同時購買的一級濾芯和二級濾芯的個數.若,且,以該客戶的凈水系統在使用期內購買各級濾芯所需總費用的期望值為決策依據,試確定的值.18.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.19.(12分)在直角坐標系中,已知點,的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設曲線與曲線相交于,兩點,求的值.20.(12分)在中,內角的對邊分別是,已知.(1)求的值;(2)若,求的面積.21.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.22.(10分)已知橢圓與拋物線有共同的焦點,且離心率為,設分別是為橢圓的上下頂點(1)求橢圓的方程;(2)過點與軸不垂直的直線與橢圓交于不同的兩點,當弦的中點落在四邊形內(含邊界)時,求直線的斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.2.B【解析】

求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.3.B【解析】

由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.4.A【解析】

計算,得到答案.【詳解】根據題意,故,表示的復數在第一象限.故選:.【點睛】本題考查了復數的計算,意在考查學生的計算能力和理解能力.5.B【解析】

化簡得到,再計算模長得到答案.【詳解】,故.故選:.【點睛】本題考查了復數的運算,復數的模,意在考查學生的計算能力.6.C【解析】

設,則,利用和求得,即可.【詳解】設,則,因為,則,所以,又,即,所以,所以,故選:C【點睛】本題考查復數的乘法法則的應用,考查共軛復數的應用.7.A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.8.D【解析】

利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.9.B【解析】

根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.10.C【解析】

求出點關于直線的對稱點的坐標,進而可得出圓關于直線的對稱圓的方程,利用二次函數的基本性質求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設點關于直線的對稱點為點,則,整理得,解得,即點,所以,圓關于直線的對稱圓的方程為,設點,則,當時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關于直線對稱性的應用,考查計算能力,屬于中等題.11.D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態分布、充分條件與必要條件等,是一道容易題.12.D【解析】

利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求出在上的對稱軸,依據對稱性可得的值;由可得,依據可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數的對稱軸,考查了誘導公式,考查了同角三角函數的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14.753【解析】

根據物品價格不變,可設共有x人,列出方程求解即可【詳解】設共有人,由題意知,解得,可知商品價格為53元.即共有7人,商品價格為53元.【點睛】本題主要考查了數學文化及一元一次方程的應用,屬于中檔題.15.【解析】

由于,且,則,得,則.16.【解析】試題分析:由題意得函數在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數a的取值范圍是考點:函數單調性三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)0.024;(2)分布列見解析,;(3)【解析】

(1)由題意可知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,而由一級濾芯更換頻數分布表和二級濾芯更換頻數條形圖可知,一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,再由乘法原理可求出概率;(2)由二級濾芯更換頻數條形圖可知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,而的可能取值為8,9,10,11,12,然后求出概率,可得到的分布列及數學期望;(3)由,且,可知若,則,或若,則,再分別計算兩種情況下的所需總費用的期望值比較大小即可.【詳解】(1)由題意知,若一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16,則該套凈水系統中一個一級過濾器需要更換8個濾芯,兩個二級過濾器均需要更換4個濾芯,設“一套凈水系統在使用期內需要更換的各級濾芯總個數恰好為16”為事件,因為一個一級過濾器需要更換8個濾芯的概率為0.6,二級過濾器需要更換4個濾芯的概率為0.2,所以.(2)由柱狀圖知,一個二級過濾器需要更換濾芯的個數為4,5,6的概率分別為0.2,0.4,0.4,由題意的可能取值為8,9,10,11,12,從而,,.所以的分布列為891011120.040.160.320.320.16(個).或用分數表示也可以為89101112(個).(3)解法一:記表示該客戶的凈水系統在使用期內購買各級濾芯所需總費用(單位:元)因為,且,1°若,則,(元);2°若,則,(元).因為,故選擇方案:.解法二:記分別表示該客戶的凈水系統在使用期內購買一級濾芯和二級濾芯所需費用(單位:元)1°若,則,的分布列為128016800.60.488010800.840.16該客戶的凈水系統在使用期內購買的各級濾芯所需總費用為(元);2°若,則,的分布列為800100012000.520.320.16(元).因為所以選擇方案:.【點睛】此題考查離散型隨機變量的分布列、數學期望的求法及應用,考查古典概型,考查運算求解能力,屬于中檔題.18.(1),();(2).【解析】

(1)根據是等差數列,,、、成等比數列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉化思想,屬于一般性題目.19.(1);(2)【解析】

(1)消去參數方程中的參數,求得的普通方程,利用極坐標和直角坐標的轉化公式,求得的直角坐標方程.(2)求得曲線的標準參數方程,代入的直角坐標方程,寫出韋達定理,根據直線參數中參數的幾何意義,求得的值.【詳解】(1)由的參數方程(為參數),消去參數可得,由曲線的極坐標方程為,得,所以的直角坐方程為,即.(2)因為在曲線上,故可設曲線的參數方程為(為參數),代入化簡可得.設,對應的參數分別為,,則,,所以.【點睛】本小題主要考查參數方程化為普通方程,考查極坐標方程化為直角坐標方程,考查利用利用和直線參數方程中參數的幾何意義進行計算,屬于中檔題.20.(1);(2).【解析】

(1)由,利用余弦定理可得,結合可得結果;(2)由正弦定理,,利用三角形內角和定理可得,由三角形面積公式可得結果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.【點睛】本題主要考查正弦定理、余弦定理及特殊角的三角函數,屬于中檔

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論