




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省常州一中2025屆高三第一次模擬(期末)數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.當時,函數的圖象大致是()A. B.C. D.2.設,,,則、、的大小關系為()A. B. C. D.3.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.4.國家統計局服務業調查中心和中國物流與采購聯合會發布的2018年10月份至2019年9月份共12個月的中國制造業采購經理指數(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數為49.4%D.12個月的PMI值的中位數為50.3%5.設,,,則()A. B. C. D.6.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種7.已知復數,則的虛部是()A. B. C. D.18.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數9.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.10.若,則實數的大小關系為()A. B. C. D.11.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.412.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數對應的點位于第二象限,則實數的范圍為______.14.若x,y滿足,則的最小值為________.15.在三棱錐P-ABC中,,,,三個側面與底面所成的角均為,三棱錐的內切球的表面積為_________.16.在一塊土地上種植某種農作物,連續5年的產量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農作物的年平均產量是______噸.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.18.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設是橢圓上且不在軸上的一個動點,為坐標原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.19.(12分)的內角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.20.(12分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.21.(12分)已知函數,其中.(1)當時,求在的切線方程;(2)求證:的極大值恒大于0.22.(10分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】由,解得,即或,函數有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數的解析式、定義域、值域、單調性,導數的應用以及數學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及時函數圖象的變化趨勢,利用排除法,將不合題意選項一一排除.2.D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.3.B【解析】
根據拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.4.D【解析】
根據圖形中的信息,可得頻率、平均值的估計、眾數、中位數,從而得到答案.【詳解】對A,從圖中數據變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數為49.4%,故C正確,;對D,12個月的PMI值的中位數為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數、中位數計算,考查數據處理能力,屬于基礎題.5.A【解析】
先利用換底公式將對數都化為以2為底,利用對數函數單調性可比較,再由中間值1可得三者的大小關系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數函數和指數函數的單調性比較大小,屬于基礎題.6.B【解析】
將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B【點睛】本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.7.C【解析】
化簡復數,分子分母同時乘以,進而求得復數,再求出,由此得到虛部.【詳解】,,所以的虛部為.故選:C【點睛】本小題主要考查復數的乘法、除法運算,考查共軛復數的虛部,屬于基礎題.8.C【解析】
根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.9.C【解析】
由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.10.A【解析】
將化成以為底的對數,即可判斷的大小關系;由對數函數、指數函數的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數函數的性質可得.又因為,故.故選:A.【點睛】本題考查了指數函數的性質,考查了對數函數的性質,考查了對數的運算性質.兩個對數型的數字比較大小時,底數相同,則構造對數函數,結合對數的單調性可判斷大小;若真數相同,則結合對數函數的圖像或者換底公式可判斷大??;若真數和底數都不相同,則可與中間值如1,0比較大小.11.C【解析】
畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【點睛】本題考查了線性規劃問題,畫出圖像是解題的關鍵.12.D【解析】
根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.14.5【解析】
先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數的線性規劃問題,是基礎題。15.【解析】
先確定頂點在底面的射影,再求出三棱錐的高以及各側面三角形的高,利用各個面的面積和乘以內切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設頂點在底面上的射影為H,H是三角形ABC的內心,內切圓半徑.三個側面與底面所成的角均為,,,的高,,設內切球的半徑為R,∴,內切球表面積.故答案為:.【點睛】本題考查三棱錐內切球的表面積問題,考查學生空間想象能力,本題解題關鍵是找到內切球的半徑,是一道中檔題.16.10【解析】
根據已知數據直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(0,2);(2)存在,理由見解析【解析】
(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.18.(Ⅰ)(Ⅱ)1【解析】
(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設直線,則直線,聯立,得,聯立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設直線,則直線,聯立,整理得,所以,聯立,整理得,設,則,所以,所以.【點睛】本題主要考查橢圓標準方程的求法以及直線與橢圓的綜合問題,考查學生的運算求解能力.19.(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據三角形面積公式,即可得出結論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.20.(1)(2)的最小值為1,此時直線:【解析】
(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;(2)設:,將其與曲線的方程聯立,消元并整理得,設,,則可得,,由求出,將直線方程與聯立,得,求得,計算,設.顯然,構造,由導數的知識求得其最小值,同時可得直線的方程.【詳解】(1)設,則,即整理得(2)設:,將其與曲線的方程聯立,得即設,,則,將直線:與聯立,得∴∴設.顯然構造在上恒成立所以在上單調遞增所以,當且僅當,即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據步驟相應給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 注冊會計師財務審計科技應用試題及答案
- 房屋交易合同額外條款協議書
- 試題及答案:培養條件的設置
- 微生物檢驗過程中的常見誤區試題及答案
- 注冊會計師考試2025年戰略財務管理的實施方法與挑戰試題及答案
- 項目管理法規遵循試題及答案
- 逐層深入備戰2025年注冊會計師考試內容試題及答案
- 2025年證券從業資格證心理準備技巧試題及答案
- 教學環境與氛圍營造計劃
- 注冊會計師時間分配技巧試題及答案
- 慢性病管理與護理方法試題及答案
- 定向培養協議書模板
- 基于CRISPR-Cas9技術探索敲除RAB7A增強肺癌對吉西他濱敏感性的機制研究
- 社區文化活動服務行業跨境出海戰略研究報告
- 汽車背戶協議合同
- 碳中和目標下的公路建設策略-全面剖析
- 2025年山東省東營市廣饒縣一中中考一模英語試題(原卷版+解析版)
- 中華傳統美德在幼兒園語言領域的滲透路徑探索
- T-ZZB 3624-2024 1000kV交流架空輸電線路金具
- 2025年河南應用技術職業學院單招職業技能測試題庫匯編
- 形勢與政策(貴州財經大學)知到智慧樹章節答案
評論
0/150
提交評論