




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省乳山市2025屆高三5月第一次階段性測試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.3.已知,,是平面內三個單位向量,若,則的最小值()A. B. C. D.54.點為的三條中線的交點,且,,則的值為()A. B. C. D.5.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.6.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.27.點為棱長是2的正方體的內切球球面上的動點,點為的中點,若滿足,則動點的軌跡的長度為()A. B. C. D.8.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.39.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或010.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.11.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件12.設命題p:>1,n2>2n,則p為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.14.《九章算術》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.15.若,則________.16.在數列中,已知,則數列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.18.(12分)的內角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.19.(12分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數方程為(θ為參數).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.20.(12分)已知函數.(1)討論的單調性;(2)若恒成立,求實數的取值范圍.21.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程為(t為參數),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.22.(10分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
結合三視圖可知,該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個圓錐,下半部分是一個底面邊長為4,高為4的正三棱柱,則上半部分的半個圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運算求解能力,屬于中檔題.2、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.3、A【解析】
由于,且為單位向量,所以可令,,再設出單位向量的坐標,再將坐標代入中,利用兩點間的距離的幾何意義可求出結果.【詳解】解:設,,,則,從而,等號可取到.故選:A【點睛】此題考查的是平面向量的坐標、模的運算,利用整體代換,再結合距離公式求解,屬于難題.4、B【解析】
可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.5、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.6、A【解析】
對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.7、C【解析】
設的中點為,利用正方形和正方體的性質,結合線面垂直的判定定理可以證明出平面,這樣可以確定動點的軌跡,最后求出動點的軌跡的長度.【詳解】設的中點為,連接,因此有,而,而平面,,因此有平面,所以動點的軌跡平面與正方體的內切球的交線.正方體的棱長為2,所以內切球的半徑為,建立如下圖所示的以為坐標原點的空間直角坐標系:因此有,設平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動點的軌跡的長度為.故選:C【點睛】本題考查了線面垂直的判定定理的應用,考查了立體幾何中軌跡問題,考查了球截面的性質,考查了空間想象能力和數學運算能力.8、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.9、C【解析】
求出函數的導函數,當時,只需,即,令,利用導數求其單調區間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.10、D【解析】
先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎題.11、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.12、C【解析】根據命題的否定,可以寫出:,所以選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設直線的方程為,與聯立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.14、【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.15、13【解析】
由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點睛】本題考查了導函數的應用、二項式定理,屬于中檔題16、【解析】
由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)乙同學正確(2)分布列見解析,【解析】
(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:“理想數據”有3個,故“理想數據”的個數的取值為:.,,于是“理想數據”的個數的分布列【點睛】本題考查樣本回歸中心點與線性回歸直線方程關系,以及離散型隨機變量的分布列和期望,意在考查邏輯推理、數學計算能力,屬于中檔題.18、(1);(2).【解析】
(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于常考題型.19、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根據,可得曲線C1的極坐標方程,然后先計算曲線C2的普通方程,最后根據極坐標與直角坐標的轉化公式,可得結果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標方程聯立,可得A,B的極坐標,然后簡單計算,可得結果.【詳解】(Ⅰ)由所以曲線的極坐標方程為,曲線的普通方程為則曲線的極坐標方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標方程和參數方程與直角坐標方程的轉化,以及極坐標方程中的幾何意義,屬基礎題.20、(1)當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增;(2).【解析】
(1)對a分三種情況討論求出函數的單調性;(2)對a分三種情況,先求出每一種情況下函數f(x)的最小值,再解不等式得解.【詳解】(1),當時,,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增;當時,,,,,∴在上單調遞減,在上單調遞增.綜上:當時,在上單調遞增;當時,在上單調遞減,在上單調遞增;當時,在上單調遞減,在上單調遞增.(2)由(1)可知:當時,,∴成立.當時,,,∴.當時,,,∴,即.綜上.【點睛】本題主要考查利用導數研究函數的單調性和不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平和分析推理能力.21、(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)將直線l參數方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MON的面積.【詳解】解:(1)由題意有,得,x+y=4,直線l的普通方程為x+y-4=0.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 玩具市場營銷策略優化考核試卷
- 童車制造企業生產計劃與庫存管理考核試卷
- 眼鏡行業消費升級與市場機遇考核試卷
- 航空運動賽事策劃與推廣考核試卷
- 空中交通管制設備維護與管理考核試卷
- 電氣機械系統維修與改造考核試卷
- 山東省棗莊市四十一中市級名校2024-2025學年初三畢業考試生物試題含解析
- 山東滕州市第一中學2025屆高三第二次適應性(模擬)檢測試題生物試題含解析
- 濮陽職業技術學院《人物形象塑造II》2023-2024學年第一學期期末試卷
- 江西省贛州市大余縣2025年初三下學期期末教學質量檢測試題語文試題含解析
- 國開電大 管理概論 形考任務一(畫組織結構圖)
- 2022年湖南高二學業水平合格考試政治試卷真題及答案詳解
- 三自由度并聯機器人結構設計
- 倉儲裝卸服務合同
- 式雙鉤五點安全帶培訓課件
- 名片設計 課件
- 鉗工實操評分表(凹凸配合)
- 社會組織管理概論全套ppt課件(完整版)
- 陜西省城市規劃管理技術規定(定稿)
- 部編版七年級下冊歷史復習提綱(重點考察知識點)
- 雙盤摩擦壓力機的設計(全套圖紙)
評論
0/150
提交評論