云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷含解析_第1頁(yè)
云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷含解析_第2頁(yè)
云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷含解析_第3頁(yè)
云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷含解析_第4頁(yè)
云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省元江民中2025屆高三第六次考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列滿足,,則()A. B. C. D.2.已知,則()A.2 B. C. D.33.寧波古圣王陽(yáng)明的《傳習(xí)錄》專門講過(guò)易經(jīng)八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“—”表示一根陽(yáng)線,“——”表示一根陰線).從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為()A. B. C. D.4.定義在上的函數(shù)與其導(dǎo)函數(shù)的圖象如圖所示,設(shè)為坐標(biāo)原點(diǎn),、、、四點(diǎn)的橫坐標(biāo)依次為、、、,則函數(shù)的單調(diào)遞減區(qū)間是()A. B. C. D.5.設(shè),是空間兩條不同的直線,,是空間兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,,則;②若,,,則;③若,,,則;④若,,,,則.其中正確的是()A.①② B.②③ C.②④ D.③④6.已知雙曲線C:()的左、右焦點(diǎn)分別為,過(guò)的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.7.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a8.已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.A. B. C. D.9.已知等差數(shù)列的前n項(xiàng)和為,且,,若(,且),則i的取值集合是()A. B. C. D.10.當(dāng)輸入的實(shí)數(shù)時(shí),執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.11.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.212.如圖,在平面四邊形中,滿足,且,沿著把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記Sk=1k+2k+3k+……+nk,當(dāng)k=1,2,3,……時(shí),觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測(cè),A﹣B=_____.14.已知函數(shù),若,則的取值范圍是__15.已知函數(shù),且,,使得,則實(shí)數(shù)m的取值范圍是______.16.已知函數(shù),則函數(shù)的極大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).點(diǎn)在曲線上,點(diǎn)滿足.(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求動(dòng)點(diǎn)的軌跡的極坐標(biāo)方程;(2)點(diǎn),分別是曲線上第一象限,第二象限上兩點(diǎn),且滿足,求的值.18.(12分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長(zhǎng)度.19.(12分)甲、乙、丙三名射擊運(yùn)動(dòng)員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實(shí)數(shù)的取值范圍.20.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.21.(12分)已知函數(shù).(1)當(dāng)時(shí),解不等式;(2)設(shè)不等式的解集為,若,求實(shí)數(shù)的取值范圍.22.(10分)移動(dòng)支付(支付寶及微信支付)已經(jīng)漸漸成為人們購(gòu)物消費(fèi)的一種支付方式,為調(diào)查市民使用移動(dòng)支付的年齡結(jié)構(gòu),隨機(jī)對(duì)100位市民做問(wèn)卷調(diào)查得到列聯(lián)表如下:(1)將上列聯(lián)表補(bǔ)充完整,并請(qǐng)說(shuō)明在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為支付方式與年齡是否有關(guān)?(2)在使用移動(dòng)支付的人群中采用分層抽樣的方式抽取10人做進(jìn)一步的問(wèn)卷調(diào)查,從這10人隨機(jī)中選出3人頒發(fā)參與獎(jiǎng)勵(lì),設(shè)年齡都低于35歲(含35歲)的人數(shù)為,求的分布列及期望.(參考公式:(其中)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.2.A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.本題考查了函數(shù)值的求法,考查對(duì)數(shù)的運(yùn)算和對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.3.B【解析】

根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4.B【解析】

先辨別出圖象中實(shí)線部分為函數(shù)的圖象,虛線部分為其導(dǎo)函數(shù)的圖象,求出函數(shù)的導(dǎo)數(shù)為,由,得出,只需在圖中找出滿足不等式對(duì)應(yīng)的的取值范圍即可.【詳解】若虛線部分為函數(shù)的圖象,則該函數(shù)只有一個(gè)極值點(diǎn),但其導(dǎo)函數(shù)圖象(實(shí)線)與軸有三個(gè)交點(diǎn),不合乎題意;若實(shí)線部分為函數(shù)的圖象,則該函數(shù)有兩個(gè)極值點(diǎn),則其導(dǎo)函數(shù)圖象(虛線)與軸恰好也只有兩個(gè)交點(diǎn),合乎題意.對(duì)函數(shù)求導(dǎo)得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數(shù)的單調(diào)遞減區(qū)間為.故選:B.本題考查利用圖象求函數(shù)的單調(diào)區(qū)間,同時(shí)也考查了利用圖象辨別函數(shù)與其導(dǎo)函數(shù)的圖象,考查推理能力,屬于中等題.5.C【解析】

根據(jù)線面平行或垂直的有關(guān)定理逐一判斷即可.【詳解】解:①:、也可能相交或異面,故①錯(cuò)②:因?yàn)椋曰颍驗(yàn)椋裕盛趯?duì)③:或,故③錯(cuò)④:如圖因?yàn)椋趦?nèi)過(guò)點(diǎn)作直線的垂線,則直線,又因?yàn)椋O(shè)經(jīng)過(guò)和相交的平面與交于直線,則又,所以因?yàn)椋裕裕盛軐?duì).故選:C考查線面平行或垂直的判斷,基礎(chǔ)題.6.D【解析】

設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.7.A【解析】

令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見(jiàn)下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.解決函數(shù)零點(diǎn)問(wèn)題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.8.C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長(zhǎng)公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長(zhǎng),即可求出六個(gè)面上的正投影長(zhǎng)度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長(zhǎng)度為;②正確,因?yàn)槊婷妫渣c(diǎn)必須在面對(duì)角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最小(為下底面面對(duì)角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長(zhǎng)分別為,,,所以六個(gè)面上的正投影長(zhǎng)度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.本題以命題的真假判斷為載體,考查了軌跡問(wèn)題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.9.C【解析】

首先求出等差數(shù)列的首先和公差,然后寫出數(shù)列即可觀察到滿足的i的取值集合.【詳解】設(shè)公差為d,由題知,,解得,,所以數(shù)列為,故.故選:C.本題主要考查了等差數(shù)列的基本量的求解,屬于基礎(chǔ)題.10.A【解析】

根據(jù)循環(huán)結(jié)構(gòu)的運(yùn)行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運(yùn)行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.11.B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.12.C【解析】

過(guò)作于,連接,易知,,從而可證平面,進(jìn)而可知,當(dāng)最大時(shí),取得最大值,取的中點(diǎn),可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過(guò)作于,連接,顯然,則,且,又因?yàn)椋云矫妫裕?dāng)最大時(shí),取得最大值,取的中點(diǎn),則,所以,因?yàn)椋渣c(diǎn)在以為焦點(diǎn)的橢圓上(不在左右頂點(diǎn)),其中長(zhǎng)軸長(zhǎng)為10,焦距長(zhǎng)為8,所以的最大值為橢圓的短軸長(zhǎng)的一半,故最大值為,所以最大值為,故的最大值為.故選:C.本題考查三棱錐體積的最大值,考查學(xué)生的空間想象能力與計(jì)算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

觀察知各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),據(jù)此計(jì)算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項(xiàng)的系數(shù)和為1,最高次項(xiàng)的系數(shù)為該項(xiàng)次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.本題考查了歸納推理,意在考查學(xué)生的推理能力.14.【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,所以,故的取值范圍是.故答案為:.本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對(duì)數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.15.【解析】

根據(jù)條件轉(zhuǎn)化為函數(shù)在上的值域是函數(shù)在上的值域的子集;分別求值域即可得到結(jié)論.【詳解】解:依題意,,即函數(shù)在上的值域是函數(shù)在上的值域的子集.因?yàn)樵谏系闹涤驗(yàn)椋ǎ┗颍ǎ谏系闹涤驗(yàn)椋驶颍獾霉蚀鸢笧椋?本題考查了分段函數(shù)的值域求參數(shù)的取值范圍,屬于中檔題.16.【解析】

對(duì)函數(shù)求導(dǎo),通過(guò)賦值,求得,再對(duì)函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.本題考查函數(shù)極值的求解,難點(diǎn)是要通過(guò)賦值,求出未知量.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)();(2)【解析】

(1)由已知,曲線的參數(shù)方程消去t后,要注意x的范圍,再利用普通方程與極坐標(biāo)方程的互化公式運(yùn)算即可;(2)設(shè),,由(1)可得,,相加即可得到證明.【詳解】(1),∵,∴,∴,由題可知:,:().(2)因?yàn)椋O(shè),,則,,.本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.18.(1)(2)【解析】

(1)根據(jù)共線得到,利用正弦定理化簡(jiǎn)得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計(jì)算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.19.(1),ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

(2)【解析】(1)P(ξ)是“ξ個(gè)人命中,3-ξ個(gè)人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ

0

1

2

3

P

(1-a)2

(1-a2)

(2a-a2)

ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.20..【解析】試題分析:,所以.試題解析:B.因?yàn)椋裕?1.(1)或;(2)【解析】

(1)使用零點(diǎn)分段法,討論分段的取值范圍,然后取它們的并集,可得結(jié)果.(2)利用等價(jià)轉(zhuǎn)化的思想,可得不等式在恒成立,然后解出解集,根據(jù)集合間的包含關(guān)系,可得結(jié)果.【詳解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論