福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題_第1頁
福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題_第2頁
福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題_第3頁
福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題_第4頁
福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省莆田市第九中學2025屆高三下學期模擬(一)測試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,經過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.2.若為虛數單位,則復數,則在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,網格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.4.已知,,,若,則()A. B. C. D.5.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.6.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱7.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.8.若函數的圖象經過點,則函數圖象的一條對稱軸的方程可以為()A. B. C. D.9.生活中人們常用“通五經貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.為弘揚中國傳統文化,某校在周末學生業余興趣活動中開展了“六藝”知識講座,每藝安排一節,連排六節,則滿足“數”必須排在前兩節,“禮”和“樂”必須分開安排的概率為()A. B. C. D.10.的展開式中有理項有()A.項 B.項 C.項 D.項11.設是虛數單位,,,則()A. B. C.1 D.212.已知全集,集合,則=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直三棱柱中,,,,P是的中點,則三棱錐的體積為________.14.設點P在函數的圖象上,點Q在函數的圖象上,則線段PQ長度的最小值為_________15.過直線上一動點向圓引兩條切線MA,MB,切點為A,B,若,則四邊形MACB的最小面積的概率為________.16.如圖,某市一學校位于該市火車站北偏東方向,且,已知是經過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學校道路,其中,,以學校為圓心,半徑為的四分之一圓弧分別與相切于點.當地政府欲投資開發區域發展經濟,其中分別在公路上,且與圓弧相切,設,的面積為.(1)求關于的函數解析式;(2)當為何值時,面積為最小,政府投資最低?三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,設函數,.(1)若,求不等式的解集;(2)若函數的最小值為1,證明:.18.(12分)已知拋物線的焦點為,點在拋物線上,,直線過點,且與拋物線交于,兩點.(1)求拋物線的方程及點的坐標;(2)求的最大值.19.(12分)已知函數.(1)解關于的不等式;(2)若函數的圖象恒在直線的上方,求實數的取值范圍20.(12分)在世界讀書日期間,某地區調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮居民農村居民合計經常閱讀10030不經常閱讀合計200(2)從該地區城鎮居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82821.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.22.(10分)已知曲線的參數方程為(為參數).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質的應用,屬于基礎題.2、B【解析】

首先根據特殊角的三角函數值將復數化為,求出,再利用復數的幾何意義即可求解.【詳解】,,則在復平面內對應的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復數的幾何意義、共軛復數的概念、特殊角的三角函數值,屬于基礎題.3、C【解析】

根據三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數學運算的核心素養.4、B【解析】

由平行求出參數,再由數量積的坐標運算計算.【詳解】由,得,則,,,所以.故選:B.【點睛】本題考查向量平行的坐標表示,考查數量積的坐標運算,掌握向量數量積的坐標運算是解題關鍵.5、A【解析】

觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。6、D【解析】

先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.7、D【解析】

由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.8、B【解析】

由點求得的值,化簡解析式,根據三角函數對稱軸的求法,求得的對稱軸,由此確定正確選項.【詳解】由題可知.所以令,得令,得故選:B【點睛】本小題主要考查根據三角函數圖象上點的坐標求參數,考查三角恒等變換,考查三角函數對稱軸的求法,屬于中檔題.9、C【解析】

分情況討論,由間接法得到“數”必須排在前兩節,“禮”和“樂”必須分開的事件個數,不考慮限制因素,總數有種,進而得到結果.【詳解】當“數”位于第一位時,禮和樂相鄰有4種情況,禮和樂順序有2種,其它剩下的有種情況,由間接法得到滿足條件的情況有當“數”在第二位時,禮和樂相鄰有3種情況,禮和樂順序有2種,其它剩下的有種,由間接法得到滿足條件的情況有共有:種情況,不考慮限制因素,總數有種,故滿足條件的事件的概率為:故答案為:C.【點睛】解排列組合問題要遵循兩個原則:①按元素(或位置)的性質進行分類;②按事情發生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).10、B【解析】

由二項展開式定理求出通項,求出的指數為整數時的個數,即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關鍵,屬于基礎題.11、C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.12、D【解析】

先計算集合,再計算,最后計算.【詳解】解:,,.故選:.【點睛】本題主要考查了集合的交,補混合運算,注意分清集合間的關系,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點,.

故答案為:【點睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎題.14、【解析】

由解析式可分析兩函數互為反函數,則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數即可求得最值.【詳解】由題,因為與互為反函數,則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調遞減;當時,,即單調遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數的性質的應用,考查利用導函數研究函數的最值問題.15、.【解析】

先求圓的半徑,四邊形的最小面積,轉化為的最小值為,求出切線長的最小值,再求的距離也就是圓心到直線的距離,可解得的取值范圍,利用幾何概型即可求得概率.【詳解】由圓的方程得,所以圓心為,半徑為,四邊形的面積,若四邊形的最小面積,所以的最小值為,而,即的最小值,此時最小為圓心到直線的距離,此時,因為,所以,所以的概率為.【點睛】本題考查直線與圓的位置關系,及與長度有關的幾何概型,考查了學生分析問題的能力,難度一般.16、(1);(2).【解析】

(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,,進而表示直線的方程,由直線與圓相切構建關系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數值域可求得t的取值范圍,進而對原面積的函數用含t的表達式換元,再令進行換元,并構建新的函數,由二次函數性質即可求得最小值.【詳解】解:(1)以點為坐標原點建立如圖所示的平面直角坐標系,則,在中,設,又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調遞減.所以,當,即時,取得最大值,取最小值.答:當時,面積為最小,政府投資最低.【點睛】本題考查三角函數的實際應用,應優先結合實際建立合適的數學模型,再按模型求最值,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】

(1)利用零點分段法,求出各段的取值范圍然后取并集可得結果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.18、(1),;(2)1.【解析】

(1)根據拋物線上的點到焦點和準線的距離相等,可得p值,即可求拋物線C的方程從而可得解;(2)設直線l的方程為:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,設A(x1,y1),B(x2,y2),則y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【詳解】(1)∵點F是拋物線y2=2px(p>0)的焦點,P(2,y0)是拋物線上一點,|PF|=3,∴23,解得:p=2,∴拋物線C的方程為y2=4x,∵點P(2,n)(n>0)在拋物線C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴設直線l的方程為:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0設A(x1,y1),B(x2,y2),則y1,y2是y2+4my﹣4=0的兩個不同實根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴當m時,取最大值1.【點睛】本題考查拋物線方程的求法,考查向量的數量積的最大值的求法,考查拋物線、直線方程、韋達定理等基礎知識,考查運算求解能力,考查函數與方程思想,是中檔題.19、(1)(2)【解析】

(1)零點分段法分,,三種情況討論即可;(2)只需找到的最小值即可.【詳解】(1)由.若時,,解得;若時,,解得;若時,,解得;故不等式的解集為.(2)由,有,得,故實數的取值范圍為.【點睛】本題考查絕對值不等式的解法以及不等式恒成立問題,考查學生的運算能力,是一道基礎題.20、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】

(1)根據題意填寫列聯表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數據可得經常閱讀的人的概率是,則,根據二項分布的期望公式計算可得;【詳解】解:(1)由題意可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論