




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆北京市北方交通大學附屬中學高三第三次模擬練習數學試題理試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定點,,是圓上的任意一點,點關于點的對稱點為,線段的垂直平分線與直線相交于點,則點的軌跡是()A.橢圓 B.雙曲線 C.拋物線 D.圓2.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.1083.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.4.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)5.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.6.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.47.已知函數,關于的方程R)有四個相異的實數根,則的取值范圍是(
)A. B. C. D.8.若雙曲線:的一條漸近線方程為,則()A. B. C. D.9.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.10.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或111.函數的大致圖象是()A. B.C. D.12.如圖,棱長為的正方體中,為線段的中點,分別為線段和棱上任意一點,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數的取值范圍為________.14.已知是第二象限角,且,,則____.15.某種賭博每局的規則是:賭客先在標記有1,2,3,4,5的卡片中隨機摸取一張,將卡片上的數字作為其賭金;隨后放回該卡片,再隨機摸取兩張,將這兩張卡片上數字之差的絕對值的1.4倍作為其獎金.若隨機變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.已知二項式ax-1x6的展開式中的常數項為-160三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.18.(12分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.19.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.20.(12分)設函數.(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.21.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.22.(10分)已知,.(1)求函數的單調遞增區間;(2)的三個內角、、所對邊分別為、、,若且,求面積的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據線段垂直平分線的性質,結合三角形中位線定理、圓錐曲線和圓的定義進行判斷即可.【詳解】因為線段的垂直平分線與直線相交于點,如下圖所示:所以有,而是中點,連接,故,因此當在如下圖所示位置時有,所以有,而是中點,連接,故,因此,綜上所述:有,所以點的軌跡是雙曲線.故選:B【點睛】本題考查了雙曲線的定義,考查了數學運算能力和推理論證能力,考查了分類討論思想.2、B【解析】
根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內的米粒數大約為,
故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.3、A【解析】
由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.4、D【解析】
求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.5、B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.6、C【解析】
逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區間;④利用導數求函數在給定區間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.7、A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數根.令=則,,即.8、A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.9、B【解析】
根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.10、D【解析】
求得直線的斜率,利用曲線的導數,求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據切線方程求參數,屬于基礎題.11、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.12、D【解析】
取中點,過作面,可得為等腰直角三角形,由,可得,當時,最小,由,故,即可求解.【詳解】取中點,過作面,如圖:則,故,而對固定的點,當時,最小.此時由面,可知為等腰直角三角形,,故.故選:D【點睛】本題考查了空間幾何體中的線面垂直、考查了學生的空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當與圓E相切時,此時,由此列出不等式,即可求解。【詳解】由題意可得,直線的方程為,聯立方程組,可得,設,則,,設,則,,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外.圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數的取值范圍為【點睛】本題主要考查了直線與拋物線位置關系的應用,以及直線與圓的位置關系的應用,其中解答中準確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉化為圓上存在點,使得是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。14、【解析】
由是第二象限角,且,可得,由及兩角和的正切公式可得的值.【詳解】解:由是第二象限角,且,可得,,由,可得,代入,可得,故答案為:.【點睛】本題主要考查同角三角函數的基本關系及兩角和的正切公式,相對不難,注意運算的準確性.15、20.2【解析】
分別求出隨機變量ξ1和ξ2的分布列,根據期望和方差公式計算得解.【詳解】設a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點睛】此題考查隨機變量及其分布,關鍵在于準確求出隨機變量取值的概率,根據公式準確計算期望和方差.16、2【解析】
在二項展開式的通項公式中,令x的冪指數等于0,求出r的值,即可求得常數項,再根據常數項等于-160求得實數a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數項為-C63故答案為:2.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因為,所以平面,又平面,所以.(2)設,,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標系,,,由平面幾何知識,得.則,,,,所以,,.設平面的法向量為,由,可得,令,則,,所以.同理,平面的一個法向量為.設平面與平面所成角為,則,所以.【點睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點考查了空間向量的應用,屬中檔題.18、(1)證明見解析;(2).【解析】
(1)利用,利用正弦定理,化簡即可證明(2)利用(1),得到當時,,得出,得出,然后可得【詳解】證明:(1)據題意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴當時,.又,∴,∴,∴.【點睛】本題考查正弦與余弦定理的應用,屬于基礎題19、(1);(2)【解析】
(1)由,利用正弦定理轉化整理為,再利用余弦定理求解.(2)根據,利用兩角和的余弦得到,利用數形結合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數形結合的方法,屬于中檔題.20、(1);(2).【解析】
分析:(1)先根據絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當時,可得的解集為.(2)等價于.而,且當時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45410.3-2025光學和光子學望遠鏡系統試驗方法第3部分:瞄準望遠鏡
- 家長課堂課題申報書
- 微生物群落分析的方法與應用試題及答案
- 英文合同權利義務轉讓協議
- 模擬習題2025年證券從業資格證考試試題及答案
- 耐力跑課題申報書
- 重點內容梳理的證券從業資格證試題及答案
- 外部合作伙伴開發計劃
- 大班團隊活動安排計劃
- 醫療器械科個人工作計劃
- 2025屆黑龍江省大慶市高三下學期第三次模擬考試歷史試題(含答案)
- 災害自救互救與應急逃生知識培訓
- 養老院火災事故防范重點培訓課件
- 便秘的評估與護理
- 人才招聘中的社交媒體運用與效果評估
- 新能源電池材料回收行業深度調研及發展戰略咨詢報告
- 專題18 電磁感應綜合題(解析版)-2025年高考物理二輪熱點題型歸納與變式演練(新高考)
- 北京海淀區2023-2024學年八年級下學期期中考試物理試題(原卷版)
- 煤礦汛期安全知識培訓課件
- 安寧療護服務流程的質量評估指標
- 《玉米栽培技術與病蟲害防治》課件
評論
0/150
提交評論