




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
大興安嶺市重點中學2025年高三下學期期中質量評估數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁2.已知,則的大小關系是()A. B. C. D.3.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.4.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.5.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點在四棱錐的外接球面上運動,記點到平面的距離為,若平面平面,則的最大值為()A. B.C. D.6.已知等差數列的前項和為,且,則()A.45 B.42 C.25 D.367.已知集合A,B=,則A∩B=A. B. C. D.8.已知函數,,的零點分別為,,,則()A. B.C. D.9.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.810.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.11.的展開式中,項的系數為()A.-23 B.17 C.20 D.6312.對于函數,若滿足,則稱為函數的一對“線性對稱點”.若實數與和與為函數的兩對“線性對稱點”,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則容器體積的最小值為_________.14.的展開式中項的系數為_______.15.已知數列的前項和為且滿足,則數列的通項_______.16.已知函數對于都有,且周期為2,當時,,則________________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.18.(12分)已知數列滿足:對一切成立.(1)求數列的通項公式;(2)求數列的前項和.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.21.(12分)已知半徑為5的圓的圓心在x軸上,圓心的橫坐標是整數,且與直線4x+3y﹣29=0相切.(1)求圓的方程;(2)設直線ax﹣y+5=0(a>0)與圓相交于A,B兩點,求實數a的取值范圍;(3)在(2)的條件下,是否存在實數a,使得弦AB的垂直平分線l過點P(﹣2,4),若存在,求出實數a的值;若不存在,請說明理由.22.(10分)已知函數,.(1)當時,討論函數的單調性;(2)若,當時,函數,求函數的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.2、B【解析】
利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數、指數的大小比較,屬于基礎題.3、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.4、C【解析】
由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題5、A【解析】
根據平面平面,四邊形為等腰梯形,則球心在過的中點的面的垂線上,又是等邊三角形,所以球心也在過的外心面的垂線上,從而找到球心,再根據已知量求解即可.【詳解】依題意如圖所示:取的中點,則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設四棱錐的外接球半徑為,則,而,所以,故選:A.【點睛】本題考查組合體、球,還考查空間想象能力以及數形結合的思想,屬于難題.6、D【解析】
由等差數列的性質可知,進而代入等差數列的前項和的公式即可.【詳解】由題,.故選:D【點睛】本題考查等差數列的性質,考查等差數列的前項和.7、A【解析】
先解A、B集合,再取交集。【詳解】,所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數軸中得出解集。8、C【解析】
轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.9、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.10、A【解析】
依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據二次函數的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數量積,關鍵是建立平面直角坐標系,屬于中檔題.11、B【解析】
根據二項式展開式的通項公式,結合乘法分配律,求得的系數.【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數為17.故選:B【點睛】本小題考查二項式定理及展開式系數的求解方法等基礎知識,考查理解能力,計算能力,分類討論和應用意識.12、D【解析】
根據已知有,可得,只需求出的最小值,根據,利用基本不等式,得到的最小值,即可得出結論.【詳解】依題意知,與為函數的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數函數的運算和圖像性質、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
一個長、寬、高分別為1、2、2的長方體可以在一個圓柱形容器內任意轉動,則圓柱形容器的底面直徑及高的最小值均等于長方體的體對角線的長,長方體的體對角線的長為,所以容器體積的最小值為.14、40【解析】
根據二項定理展開式,求得r的值,進而求得系數.【詳解】根據二項定理展開式的通項式得所以,解得所以系數【點睛】本題考查了二項式定理的簡單應用,屬于基礎題.15、【解析】
先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當時,,解得;由,可知當時,,兩式相減,得,即,所以數列是首項為,公比為的等比數列,所以,故答案為:【點睛】本題考查由與的關系求通項公式,考查等比數列的通項公式的應用.16、【解析】
利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數的周期性與對稱性的應用,考查轉化能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區間時,無遞減區間,當時,遞增區間時,遞減區間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方程只有一個解,當時,由(1)得在出取得極小值,也是最小值,當時,,此時函數只有一個零點,原方程只有一個解,當且遞增區間時,遞減區間時;,當,有兩個零點,即原方程有兩個解,不合題意,所以的取值范圍是或.【點睛】本題考查導數的綜合應用,涉及到單調性、零點、極值最值,考查分類討論和等價轉化思想,屬于中檔題.18、(1);(2)【解析】
(1)先通過求得,再由得,和條件中的式子作差可得答案;(2)變形可得,通過裂項求和法可得答案.【詳解】(1)①,當時,,,當時,②,①②得:,,適合,故;(2),.【點睛】本題考查法求數列的通項公式,考查裂項求和,是基礎題.19、(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.20、(1)(2)或.【解析】
(1)圓的方程已知,根據條件列出方程組,解方程即得;(2)設,,顯然直線l的斜率存在,方法一:設直線l的方程為:,將直線方程和橢圓方程聯立,消去,可得,同理直線方程和圓方程聯立,可得,再由可解得,即得;方法二:設直線l的方程為:,與橢圓方程聯立,可得,將其與圓方程聯立,可得,由可解得,即得.【詳解】(1)記橢圓E的焦距為().右頂點在圓C上,右準線與圓C:相切.解得,,橢圓方程為:.(2)法1:設,,顯然直線l的斜率存在,設直線l的方程為:.直線方程和橢圓方程聯立,由方程組消去y得,整理得.由,解得.直線方程和圓方程聯立,由方程組消去y得,由,解得.又,則有.即,解得,故直線l的方程為或.分法2:設,,當直線l與x軸重合時,不符題意.設直線l的方程為:.由方程組消去x得,,解得.由方程組消去x得,,解得.又,則有.即,解得,故直線l的方程為或.【點睛】本題考查求橢圓的標準方程,以及直線和橢圓的位置關系,考查學生的分析和運算能力.21、(2)(x﹣2)2+y2=2.(2)().(3)存在,【解析】
(2)設圓心為M(m,0),根據相切得到,計算得到答案.(2)把直線ax﹣y+5=0,代入圓的方程,計算△=4(5a﹣2)2﹣4(a2+2)>0得到答案.(3)l的方程為,即x+ay+2﹣4a=0,過點M(2,0),計算得到答案.【詳解】(2)設圓心為M(m,0)(m∈Z).由于圓與直線4x+3y﹣29=0相切,且半徑為5,所以,即|4m﹣29|=2.因為m為整數,故m=2.故所求圓的方程為(x﹣2)2+y2=2.(2)把直線ax﹣y+5=0,即y=ax+5,代入圓的方程,消去y,整理得(a2+2)x2+2(5a﹣2)x+2=0,由于直線ax﹣y+5=0交圓于A,B兩點,故△=4(5a﹣2)2﹣4(a2+2)>0,即22a2﹣5a>0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC TS 62271-313:2025 EXV EN High-voltage switchgear and controlgear - Part 313: Direct current circuit-breakers
- 【正版授權】 IEC 63505:2025 EN Guidelines for measuring the threshold voltage (VT) of SiC MOSFETs
- 【正版授權】 IEC TS 62565-5-3:2025 EN Nanomanufacturing – Product specification – Part 5-3: Nanoenabled energy storage – Blank detail specification: silicon nanosized materials for the n
- 2025年英語專業八級考試試卷及答案
- 2025年藝術設計專業期末考試試卷及答案
- 2025年新媒體藝術專業考試題及答案
- 2025年市場分析與預測能力測試卷及答案
- 2025年成人高考學歷考試試題及答案
- 2025年公共衛生應急管理課程考試試題及答案
- 2025年區域經濟發展研究專業考試試卷及答案
- 跨境電商合伙投資協議書
- 2024年網格員考試題庫及答案1套
- 國開(遼寧)2024年《中國傳統文化概觀》形考1-4答案
- 狀元展廳方案策劃
- 土壤農化分析實驗智慧樹知到期末考試答案章節答案2024年甘肅農業大學
- 鳶飛魚躍:〈四書〉經典導讀智慧樹知到期末考試答案章節答案2024年四川大學
- 空壓機日常維護保養點檢記錄表
- MOOC 統計學-南京審計大學 中國大學慕課答案
- 福建省廈門市集美區2023屆小升初語文試卷(含解析)
- 毛澤東詩詞鑒賞
- 電機與拖動(高職)全套教學課件
評論
0/150
提交評論