




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西藏林芝二中2025年下學期高三數學試題期中測試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.2.如圖所示,直三棱柱的高為4,底面邊長分別是5,12,13,當球與上底面三條棱都相切時球心到下底面距離為8,則球的體積為()A.1605π3 B.6423.已知函數與的圖象有一個橫坐標為的交點,若函數的圖象的縱坐標不變,橫坐標變為原來的倍后,得到的函數在有且僅有5個零點,則的取值范圍是()A. B.C. D.4.△ABC的內角A,B,C的對邊分別為,已知,則為()A. B. C.或 D.或5.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.6.設拋物線的焦點為F,拋物線C與圓交于M,N兩點,若,則的面積為()A. B. C. D.7.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.8.下列函數中既關于直線對稱,又在區間上為增函數的是()A.. B.C. D.9.已知函數,且關于的方程有且只有一個實數根,則實數的取值范圍().A. B. C. D.10.在中,為邊上的中點,且,則()A. B. C. D.11.函數的一個零點在區間內,則實數a的取值范圍是()A. B. C. D.12.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程是__________.14.點在雙曲線的右支上,其左、右焦點分別為、,直線與以坐標原點為圓心、為半徑的圓相切于點,線段的垂直平分線恰好過點,則該雙曲線的漸近線的斜率為__________.15.在平面直角坐標系中,若雙曲線經過點(3,4),則該雙曲線的準線方程為_____.16.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側棱上一點,已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.18.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?19.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.20.(12分)已知中,角,,的對邊分別為,,,已知向量,且.(1)求角的大小;(2)若的面積為,,求.21.(12分)設函數.(1)若恒成立,求整數的最大值;(2)求證:.22.(10分)已知函數,將的圖象向左移個單位,得到函數的圖象.(1)若,求的單調區間;(2)若,的一條對稱軸是,求在的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.2.A【解析】
設球心為O,三棱柱的上底面ΔA1B1C1的內切圓的圓心為O1,該圓與邊B【詳解】如圖,設三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設球心為O,則由球的幾何知識得ΔOO1M所以OM=2即球O的半徑為25所以球O的體積為43故選A.【點睛】本題考查與球有關的組合體的問題,解答本題的關鍵有兩個:(1)構造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內求出球的半徑,這是解決與球有關的問題時常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內切圓的半徑r=a+b-c3.A【解析】
根據題意,,求出,所以,根據三角函數圖像平移伸縮,即可求出的取值范圍.【詳解】已知與的圖象有一個橫坐標為的交點,則,,,,,若函數圖象的縱坐標不變,橫坐標變為原來的倍,則,所以當時,,在有且僅有5個零點,,.故選:A.【點睛】本題考查三角函數圖象的性質、三角函數的平移伸縮以及零點個數問題,考查轉化思想和計算能力.4.D【解析】
由正弦定理可求得,再由角A的范圍可求得角A.【詳解】由正弦定理可知,所以,解得,又,且,所以或。故選:D.【點睛】本題主要考查正弦定理,注意角的范圍,是否有兩解的情況,屬于基礎題.5.D【解析】
由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.6.B【解析】
由圓過原點,知中有一點與原點重合,作出圖形,由,,得,從而直線傾斜角為,寫出點坐標,代入拋物線方程求出參數,可得點坐標,從而得三角形面積.【詳解】由題意圓過原點,所以原點是圓與拋物線的一個交點,不妨設為,如圖,由于,,∴,∴,,∴點坐標為,代入拋物線方程得,,∴,.故選:B.【點睛】本題考查拋物線與圓相交問題,解題關鍵是發現原點是其中一個交點,從而是等腰直角三角形,于是可得點坐標,問題可解,如果僅從方程組角度研究兩曲線交點,恐怕難度會大大增加,甚至沒法求解.7.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.8.C【解析】
根據函數的對稱性和單調性的特點,利用排除法,即可得出答案.【詳解】A中,當時,,所以不關于直線對稱,則錯誤;B中,,所以在區間上為減函數,則錯誤;D中,,而,則,所以不關于直線對稱,則錯誤;故選:C.【點睛】本題考查函數基本性質,根據函數的解析式判斷函數的對稱性和單調性,屬于基礎題.9.B【解析】
根據條件可知方程有且只有一個實根等價于函數的圖象與直線只有一個交點,作出圖象,數形結合即可.【詳解】解:因為條件等價于函數的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.【點睛】本題主要考查函數圖象與方程零點之間的關系,數形結合是關鍵,屬于基礎題.10.A【解析】
由為邊上的中點,表示出,然后用向量模的計算公式求模.【詳解】解:為邊上的中點,,故選:A【點睛】在三角形中,考查中點向量公式和向量模的求法,是基礎題.11.C【解析】
顯然函數在區間內連續,由的一個零點在區間內,則,即可求解.【詳解】由題,顯然函數在區間內連續,因為的一個零點在區間內,所以,即,解得,故選:C【點睛】本題考查零點存在性定理的應用,屬于基礎題.12.D【解析】
利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用導數的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區別,是一道容易題.14.【解析】如圖,是切點,是的中點,因為,所以,又,所以,,又,根據雙曲線的定義,有,即,兩邊平方并化簡得,所以,因此.15.【解析】
代入求解得,再求準線方程即可.【詳解】解:雙曲線經過點,,解得,即.又,故該雙曲線的準線方程為:.故答案為:.【點睛】本題主要考查了雙曲線的準線方程求解,屬于基礎題.16.【解析】
先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區分展開式中各項系數的和與各二項式系數和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見解析;(Ⅱ).【解析】
(Ⅰ)先證明
,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據題意以為軸、軸、軸建立空間直角坐標系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標系,則,,,設平面的法向量為,則令,則,是平面的一個法向量設平面的一個法向量為令,則是平面的一個法向量=又二面角為鈍二面角,其余弦值為.【點睛】本題考查線面、面面垂直的判定定理與性質定理,考查向量法求二面角的余弦值,考查直觀想象能力與運算求解能力,屬于中檔題.18.(1);(2)當BP為cm時,α+β取得最小值.【解析】
(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據得到,解得答案.(2)設BP=t,則,故,設,求導得到函數單調性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,則,化簡得,解之得,或(舍),(2)設BP=t,則,,設,,令f'(t)=0,因為,得,當時,f'(t)<0,f(t)是減函數;當時,f'(t)>0,f(t)是增函數,所以,當時,f(t)取得最小值,即tan(α+β)取得最小值,因為恒成立,所以f(t)<0,所以tan(α+β)<0,,因為y=tanx在上是增函數,所以當時,α+β取得最小值.【點睛】本題考查了三角恒等變換,利用導數求最值,意在考查學生的計算能力和應用能力.19.(1)(2)是為定值,的橫坐標為定值【解析】
(1)根據“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯立直線的方程和橢圓方程,化簡后寫出根與系數關系.求得直線的方程,并求得兩直線交點的橫坐標,結合根與系數關系進行化簡,求得的橫坐標為定值.【詳解】(1)依題意可知,解得,即;而,即,結合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯系方程,解得,又因為.所以.所以的橫坐標為定值.【點睛】本小題主要考查根據橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.20.(1);(2).【解析】試題分析:(1)利用已知及平面向量數量積運算可得,利用正弦定理可得,結合,可求,從而可求的值;(2)由三角形的面積可解得,利用余弦定理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數據庫的數據操作試題及答案研究
- 船舶修理項目風險管理與防范考核試卷
- 碳素材料在精密加工工具中的性能考核試卷
- 公路工程專業發展制度試題及答案
- 培訓機構班課管理制度
- 外勤巡夜人員管理制度
- 北京餐飲垃圾管理制度
- 化妝培訓學生管理制度
- 農貿市場計量管理制度
- 理解大數據環境下數據庫架構的演變試題及答案
- 電子胎心監護應用專家共識解讀
- 超標準洪水應急預案
- 美容診所合作協議書
- 2025湖南中考:英語必背知識點
- 2025年人教版小學一年級下學期奧林匹克數學競賽試卷(附答案解析)
- 2025年滁州市軌道交通運營有限公司第二批次招聘31人筆試參考題庫附帶答案詳解
- 2025年高考英語考前熱點話題押題卷(新高考Ⅰ卷)-2025年高考英語模擬考試(解析版)
- 浙江國企筆試題目及答案
- 2025年內蒙古自治區呼和浩特市中考二模英語試題 (含答案無聽力音頻及原文)
- 電力現場安全管理課件
- 分子生物學技術在檢驗中的應用試題及答案
評論
0/150
提交評論