




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
北京市中央美術學院附屬實驗學校2025屆高三下學期起點考試數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.2.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5783.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.84.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.255.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.6.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg7.已知是雙曲線的左、右焦點,若點關于雙曲線漸近線的對稱點滿足(為坐標原點),則雙曲線的漸近線方程為()A. B. C. D.8.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6749.已知橢圓,直線與直線相交于點,且點在橢圓內(nèi)恒成立,則橢圓的離心率取值范圍為()A. B. C. D.10.已知拋物線經(jīng)過點,焦點為,則直線的斜率為()A. B. C. D.11.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.212.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中常數(shù)項是___________.14.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總?cè)藬?shù)為__________.15.正方形的邊長為2,圓內(nèi)切于正方形,為圓的一條動直徑,點為正方形邊界上任一點,則的取值范圍是______.16.已知“在中,”,類比以上正弦定理,“在三棱錐中,側(cè)棱與平面所成的角為、與平面所成的角為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,矩形和梯形所在的平面互相垂直,,,.(1)若為的中點,求證:平面;(2)若,求四棱錐的體積.18.(12分)設都是正數(shù),且,.求證:.19.(12分)已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.21.(12分)在開展學習強國的活動中,某校高三數(shù)學教師成立了黨員和非黨員兩個學習組,其中黨員學習組有4名男教師、1名女教師,非黨員學習組有2名男教師、2名女教師,高三數(shù)學組計劃從兩個學習組中隨機各選2名教師參加學校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學期望.22.(10分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想,應用意識.2、D【解析】
因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.【點睛】本題考查了隨機數(shù)表表的應用,正確掌握隨機數(shù)表法的使用方法是解題的關鍵.3、B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎題.4、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.5、B【解析】
根據(jù)組合知識,計算出選出的人分成兩隊混合雙打的總數(shù)為,然后計算和分在一組的數(shù)目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.6、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.7、B【解析】
先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關鍵,屬于中檔題.8、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.9、A【解析】
先求得橢圓焦點坐標,判斷出直線過橢圓的焦點.然后判斷出,判斷出點的軌跡方程,根據(jù)恒在橢圓內(nèi)列不等式,化簡后求得離心率的取值范圍.【詳解】設是橢圓的焦點,所以.直線過點,直線過點,由于,所以,所以點的軌跡是以為直徑的圓.由于點在橢圓內(nèi)恒成立,所以橢圓的短軸大于,即,所以,所以雙曲線的離心率,所以.故選:A【點睛】本小題主要考查直線與直線的位置關系,考查動點軌跡的判斷,考查橢圓離心率的取值范圍的求法,屬于中檔題.10、A【解析】
先求出,再求焦點坐標,最后求的斜率【詳解】解:拋物線經(jīng)過點,,,,故選:A【點睛】考查拋物線的基礎知識及斜率的運算公式,基礎題.11、B【解析】
首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.12、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.14、60【解析】
根據(jù)樣本容量及各組人數(shù)比,可求得C組中的人數(shù);由組中甲、乙二人均被抽到的概率是可求得C組的總?cè)藬?shù),即可由各組人數(shù)比求得總?cè)藬?shù).【詳解】三組人數(shù)之比為,現(xiàn)用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數(shù)分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數(shù)求總?cè)藬?shù)的應用,屬于基礎題.15、【解析】
根據(jù)向量關系表示,只需求出的取值范圍即可得解.【詳解】由題可得:,故答案為:【點睛】此題考查求平面向量數(shù)量積的取值范圍,涉及基本運算,關鍵在于恰當?shù)貙ο蛄窟M行轉(zhuǎn)換,便于計算解題.16、【解析】
類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側(cè)棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結構類比,方法類比等.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)設EC與DF交于點N,連結MN,由中位線定理可得MN∥AC,故AC∥平面MDF;(2)取CD中點為G,連結BG,EG,則可證四邊形ABGD是矩形,由面面垂直的性質(zhì)得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,從而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入體積公式即可計算出體積.【詳解】(1)證明:設與交于點,連接,在矩形中,點為中點,∵為的中點,∴,又∵平面,平面,∴平面.(2)取中點為,連接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的長即為四棱錐的高,在梯形中,,∴四邊形是平行四邊形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【點睛】求錐體的體積要充分利用多面體的截面和旋轉(zhuǎn)體的軸截面,將空間問題轉(zhuǎn)化為平面問題求解,注意求體積的一些特殊方法——分割法、補形法、等體積法.①割補法:求一些不規(guī)則幾何體的體積時,常用割補法轉(zhuǎn)化成已知體積公式的幾何體進行解決.②等積法:等積法包括等面積法和等體積法.等積法的前提是幾何圖形(或幾何體)的面積(或體積)通過已知條件可以得到,利用等積法可以用來求解幾何圖形的高或幾何體的高,特別是在求三角形的高和三棱錐的高時,這一方法回避了通過具體作圖得到三角形(或三棱錐)的高,而通過直接計算得到高的數(shù)值.18、證明見解析【解析】
利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關鍵;屬于中檔題。19、(1)證明見解析;(2)【解析】
(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標系,分別表示出對應的點坐標,設平面的一個法向量為,結合直線對應的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標系,則,,,,,,.設平面的一個法向量為,由,取,得.設直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記20、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設而不求,利用坐標關系及根與系數(shù)關系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 育嬰師在多元文化中的角色與適應考題試題及答案
- 華潤面試題目及答案
- 文化產(chǎn)業(yè)管理與社會發(fā)展的互動試題及答案
- 藥物副作用識別試題及答案
- 應對變化的衛(wèi)生管理考試試題及答案
- 紅巖西游記試題及答案
- 全民眼力測試題及答案
- 系統(tǒng)架構設計中面臨的技術挑戰(zhàn)試題及答案
- 編排醫(yī)學基礎知識復習計劃試題及答案
- 自如客服考試題及答案
- 2024年浙江長征職業(yè)技術學院單招綜合素質(zhì)考試題庫附答案
- 2025屆安徽省池州市普通高中高三下學期教學質(zhì)量統(tǒng)一監(jiān)測物理試卷(含答案)
- 庫房管理工作職責與規(guī)范化
- 專題06文學文化常識中考語文一輪復習
- WMS倉庫管理系統(tǒng)采購協(xié)議
- 2024國家數(shù)字化范式與路徑-公共政策立場-67正式版
- 2025年河南工業(yè)和信息化職業(yè)學院單招職業(yè)技能測試題庫必考題
- 瑞吉歐幼兒教育
- 2025年中國人壽招聘筆試筆試參考題庫附帶答案詳解
- 中國輸電線路在線監(jiān)測系統(tǒng)行業(yè)發(fā)展狀況及前景規(guī)模調(diào)查報告2025-2030年
- 第16課《有為有不為》公開課一等獎創(chuàng)新教學設計
評論
0/150
提交評論