河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題_第1頁
河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題_第2頁
河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題_第3頁
河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題_第4頁
河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省南陽市南陽一中2025年下學期高三年級3月第五次調研考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數若函數在上零點最多,則實數的取值范圍是()A. B. C. D.2.公元前世紀,古希臘哲學家芝諾發表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的倍.當比賽開始后,若阿基里斯跑了米,此時烏龜便領先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規律,若阿基里斯和烏龜的距離恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米3.如圖,設為內一點,且,則與的面積之比為A. B.C. D.4.若,,,點C在AB上,且,設,則的值為()A. B. C. D.5.對兩個變量進行回歸分析,給出如下一組樣本數據:,,,,下列函數模型中擬合較好的是()A. B. C. D.6.已知函數在上都存在導函數,對于任意的實數都有,當時,,若,則實數的取值范圍是()A. B. C. D.7.設復數滿足為虛數單位),則()A. B. C. D.8.已知定義在上的函數的周期為4,當時,,則()A. B. C. D.9.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.10.若為純虛數,則z=()A. B.6i C. D.2011.已知函數,,若,對任意恒有,在區間上有且只有一個使,則的最大值為()A. B. C. D.12.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,所有項的二項式系數之和為256,則_______,項的系數等于________.14.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內的交點為,且,則雙曲線的離心率為__________.15.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.16.的展開式中的常數項為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發公共衛生事件.中華民族歷史上經歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數據統計中發現,從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數量(單位:萬人)之間的關系如下表:日期1234567全國累計報告確診病例數量(萬人)1.41.72.02.42.83.13.5(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與的關系?(2)求出關于的線性回歸方程(系數精確到0.01).并預測2月10日全國累計報告確診病例數.參考數據:,,,.參考公式:相關系數回歸方程中斜率和截距的最小二乘估計公式分別為:,.18.(12分)已知函數,為的導數,函數在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.19.(12分)的內角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.20.(12分)己知,,.(1)求證:;(2)若,求證:.21.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.22.(10分)(江蘇省徐州市高三第一次質量檢測數學試題)在平面直角坐標系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當線段的長度最小時,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

將函數的零點個數問題轉化為函數與直線的交點的個數問題,畫出函數的圖象,易知直線過定點,故與在時的圖象必有兩個交點,故只需與在時的圖象有兩個交點,再與切線問題相結合,即可求解.【詳解】由圖知與有個公共點即可,即,當設切點,則,.故選:D.【點睛】本題考查了函數的零點個數的問題,曲線的切線問題,注意運用轉化思想和數形結合思想,屬于較難的壓軸題.2.D【解析】

根據題意,是一個等比數列模型,設,由,解得,再求和.【詳解】根據題意,這是一個等比數列模型,設,所以,解得,所以.故選:D【點睛】本題主要考查等比數列的實際應用,還考查了建模解模的能力,屬于中檔題.3.A【解析】

作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.4.B【解析】

利用向量的數量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.5.D【解析】

作出四個函數的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數據的點越多,說明擬合效果好.6.B【解析】

先構造函數,再利用函數奇偶性與單調性化簡不等式,解得結果.【詳解】令,則當時,,又,所以為偶函數,從而等價于,因此選B.【點睛】本題考查利用函數奇偶性與單調性求解不等式,考查綜合分析求解能力,屬中檔題.7.B【解析】

易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.8.A【解析】

因為給出的解析式只適用于,所以利用周期性,將轉化為,再與一起代入解析式,利用對數恒等式和對數的運算性質,即可求得結果.【詳解】定義在上的函數的周期為4,當時,,,,.故選:A.【點睛】本題考查了利用函數的周期性求函數值,對數的運算性質,屬于中檔題.9.B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10.C【解析】

根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.11.C【解析】

根據的零點和最值點列方程組,求得的表達式(用表示),根據在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數的零點和最值,考查三角函數的性質,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于中檔題.12.C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結合關系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.81【解析】

根據二項式系數和的性質可得n,再利用展開式的通項公式求含項的系數即可.【詳解】由于所有項的二項式系數之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數的性質,二項式展開式的通項公式,屬于中檔題.14.【解析】

先根據橢圓得出焦距,結合橢圓的定義求出,結合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.15.【解析】

由題意欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數,再利用一元二次函數的性質求最值.【詳解】欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數的最值問題.16.160【解析】

先求的展開式中通項,令的指數為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數項為:.故答案為:160.【點睛】本題考查二項式系數的性質,關鍵是熟記二項展開式的通項,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)可以用線性回歸模型擬合與的關系;(2),預測2月10日全國累計報告確診病例數約有4.5萬人.【解析】

(1)根據已知數據,利用公式求得,再根據的值越大說明它們的線性相關性越高來判斷.(2)由(1)的相關數據,求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數據得,,,所以,,所以.因為與的相關近似為0.99,說明它們的線性相關性相當高,從而可以用線性回歸模型擬合與的關系.(2)由(1)得,,,所以,關于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數約有4.5萬人.【點睛】本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.18.(1)見解析;(2).【解析】

(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數,因為,,所以,存在使得,即.所以,當時,為減函數,當時,為增函數,故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數,所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數,(*)若時,為增函數,所以的最小值為.注意到時,,且此時,(ⅰ)當時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數,所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數與導數綜合,考查了利用導數研究函數的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數學運算能力,屬于較難題.19.(1);(2).【解析】

(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于常考題型.20.(1)證明見解析(2)證明見解析【解析】

(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論