




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省衡陽市五校2025屆校高三下學期期末數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖象向左平移個單位后得到函數的圖象,則的最小值為()A. B. C. D.2.定義:表示不等式的解集中的整數解之和.若,,,則實數的取值范圍是A. B. C. D.3.函數的大致圖象為A. B.C. D.4.在區間上隨機取一個實數,使直線與圓相交的概率為()A. B. C. D.5.要得到函數的圖象,只需將函數的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度6.下列判斷錯誤的是()A.若隨機變量服從正態分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機變量服從二項分布:,則D.是的充分不必要條件7.設則以線段為直徑的圓的方程是()A. B.C. D.8.已知橢圓的左、右焦點分別為、,過的直線交橢圓于A,B兩點,交y軸于點M,若、M是線段AB的三等分點,則橢圓的離心率為()A. B. C. D.9.已知我市某居民小區戶主人數和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數分別為A.240,18 B.200,20C.240,20 D.200,1810.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.11.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}12.在明代程大位所著的《算法統宗》中有這樣一首歌謠,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛馬羊,要求賠償五斗糧,三畜戶主愿賠償,牛馬羊吃得異樣.馬吃了牛的一半,羊吃了馬的一半.”請問各畜賠多少?它的大意是放牧人放牧時粗心大意,牛、馬、羊偷吃青苗,青苗主人扣住牛、馬、羊向其主人要求賠償五斗糧食(1斗=10升),三畜的主人同意賠償,但牛、馬、羊吃的青苗量各不相同.馬吃的青苗是牛的一半,羊吃的青苗是馬的一半.問羊、馬、牛的主人應該分別向青苗主人賠償多少升糧食?()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數的圖像向右平移個單位,得到函數的圖像,則函數在區間上的值域為__________.14.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.15.若展開式中的常數項為240,則實數的值為________.16.某種圓柱形的如罐的容積為個立方單位,當它的底面半徑和高的比值為______.時,可使得所用材料最省.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在中,a、b、c分別為角A、B、C的對邊,且.(1)求角A的值;(2)若,設角,周長為y,求的最大值.18.(12分)的內角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.19.(12分)在平面直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線:.過點的直線:(為參數)與曲線相交于,兩點.(1)求曲線的直角坐標方程和直線的普通方程;(2)若,求實數的值.20.(12分)已知.(1)若,求函數的單調區間;(2)若不等式恒成立,求實數的取值范圍.21.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.22.(10分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
首先求得平移后的函數,再根據求的最小值.【詳解】根據題意,的圖象向左平移個單位后,所得圖象對應的函數,所以,所以.又,所以的最小值為.故選:A【點睛】本題考查三角函數的圖象變換,誘導公式,意在考查平移變換,屬于基礎題型.2.D【解析】
由題意得,表示不等式的解集中整數解之和為6.當時,數形結合(如圖)得的解集中的整數解有無數多個,解集中的整數解之和一定大于6.當時,,數形結合(如圖),由解得.在內有3個整數解,為1,2,3,滿足,所以符合題意.當時,作出函數和的圖象,如圖所示.若,即的整數解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數的取值范圍是.故選D.3.A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.4.D【解析】
利用直線與圓相交求出實數的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數,考查計算能力,屬于基礎題.5.D【解析】
先將化為,根據函數圖像的平移原則,即可得出結果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數的平移,熟記函數平移原則即可,屬于基礎題型.6.D【解析】
根據正態分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,依次對四個選項加以分析判斷,進而可求解.【詳解】對于選項,若隨機變量服從正態分布,根據正態分布曲線的對稱性,有,故選項正確,不符合題意;對于選項,已知直線平面,直線平面,則當時一定有,充分性成立,而當時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項正確,不符合題意;對于選項,若隨機變量服從二項分布:,則,故選項正確,不符合題意;對于選項,,僅當時有,當時,不成立,故充分性不成立;若,僅當時有,當時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項不正確,符合題意.故選:D【點睛】本題考查正態分布、空間中點線面的位置關系、充分條件與必要條件的判斷、二項分布及不等式的性質等知識,考查理解辨析能力與運算求解能力,屬于基礎題.7.A【解析】
計算的中點坐標為,圓半徑為,得到圓方程.【詳解】的中點坐標為:,圓半徑為,圓方程為.故選:.【點睛】本題考查了圓的標準方程,意在考查學生的計算能力.8.D【解析】
根據題意,求得的坐標,根據點在橢圓上,點的坐標滿足橢圓方程,即可求得結果.【詳解】由已知可知,點為中點,為中點,故可得,故可得;代入橢圓方程可得,解得,不妨取,故可得點的坐標為,則,易知點坐標,將點坐標代入橢圓方程得,所以離心率為,故選:D.【點睛】本題考查橢圓離心率的求解,難點在于根據題意求得點的坐標,屬中檔題.9.A【解析】
利用統計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數.【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數的求法,是基礎題,解題時要認真審題,注意統計圖的性質的合理運用.10.A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優先考慮幾何法,避免代數法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.11.B【解析】
按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.12.D【解析】
設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,易知成等比數列,,結合等比數列的性質可求出答案.【詳解】設羊戶賠糧升,馬戶賠糧升,牛戶賠糧升,則成等比數列,且公比,則,故,,.故選:D.【點睛】本題考查數列與數學文化,考查了等比數列的性質,考查了學生的運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據圖像的平移變換得到函數的解析式,再利用整體思想求函數的值域.【詳解】函數的圖像向右平移個單位得,,,.故答案為:.【點睛】本題考查三角函數圖像的平移變換、值域的求解,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.14.【解析】
根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.15.-3【解析】
依題意可得二項式展開式的常數項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數項為,∴解得.故答案為:【點睛】本題考查二項式展開式中常數項的計算,屬于基礎題.16.【解析】
設圓柱的高為,底面半徑為,根據容積為個立方單位可得,再列出該圓柱的表面積,利用導數求出最值,從而進一步得到圓柱的底面半徑和高的比值.【詳解】設圓柱的高為,底面半徑為.∵該圓柱形的如罐的容積為個立方單位∴,即.∴該圓柱形的表面積為.令,則.令,得;令,得.∴在上單調遞減,在上單調遞增.∴當時,取得最小值,即材料最省,此時.故答案為:.【點睛】本題考查函數的應用,解答本題的關鍵是寫出表面積的表示式,再利用導數求函數的最值,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用正弦定理,結合題中條件,可以得到,之后應用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周長,利用三角函數的最值求解即可.【詳解】(1)由已知可得,結合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴當,即時,.【點睛】該題主要考查的是有關解三角形的問題,解題的關鍵是掌握正余弦定理,屬于簡單題目.18.(1)(2)【解析】
(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.【點睛】本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.19.(1),;(2).【解析】
(1)將代入求解,由(為參數)消去即可.(2)將(為參數)與聯立得,設,兩點對應的參數為,,則,,再根據,即,利用韋達定理求解.【詳解】(1)把代入,得,由(為參數),消去得,∴曲線的直角坐標方程和直線的普通方程分別是,.(2)將(為參數)代入得,設,兩點對應的參數為,,則,,由得,所以,即,所以,而,解得.【點睛】本題主要考查參數方程、極坐標方程、直角坐標方程的轉化和直線參數方程的應用,還考查了運算求解的能力,屬于中檔題.20.(1)答案不唯一,具體見解析(2)【解析】
(1)分類討論,利用導數的正負,可得函數的單調區間.(2)分離出參數后,轉化為函數的最值問題解決,注意函數定義域.【詳解】(1)由得或①當時,由,得.由,得或此時的單調遞減區間為,單調遞增區間為和.②當時,由,得由,得或此時的單調遞減區間為,單調遞增區間為和綜上:當時,單調遞減區間為,單調遞增區間為和當時,的單調遞減區間為,單調遞增區間為和.(2)依題意,不等式恒成立等價于在上恒成立,可得,在上恒成立,設,則令,得,(舍)當時,;當時,當變化時,,變化情況如下表:10單調遞增單調遞減∴當時,取得最大值,,∴.∴的取值范圍是.【點睛】本題主要考查了利用導數證明函數的單調性以及利用導數研究不等式的恒成立問題,屬于中檔題.21.(1);(2)【解析】分析:(1)將代入函數解析式,求得,利用零點分段將解析式化為,然后利用分段函數,分情況討論求得不等式的解集為;(2)根據題中所給的,其中一個絕對值符號可以去掉,不等式可以化為時,分情況討論即可求得結果.詳解:(1)當時,,即故不等式的解集為.(2)當時成立等價于當時成立.若,則當時;若,的解集為,所以,故.綜上,的取值范圍為.點睛:該題考查的是有關絕對值不等式的解法,以及含參的絕對值的式子在某個區間上恒成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年稅法考試政策試題及答案
- 角色塑造與社會環境的互動文學概論試題及答案
- 應用程序接口的設計與實現試題及答案
- 常用漢字識別的試題及答案
- 網絡流量監測工具使用試題及答案
- 嬰幼兒配方食品營養配方優化在2025年嬰幼兒食品行業中的風險管理
- 推動科技服務業質量持續提升策略
- 2025年互聯網醫療平臺在線問診服務質量提升路徑研究進展報告
- 網絡調試技巧及試題及答案解析
- 2025年財務戰略重點領域試題及答案
- 穿越時空的音樂鑒賞之旅智慧樹知到期末考試答案章節答案2024年浙江中醫藥大學
- CJT 511-2017 鑄鐵檢查井蓋
- 活動執行實施合同范本
- 24春國開電大《機電一體化系統綜合實訓》實訓報告
- DZ∕T 0207-2020 礦產地質勘查規范 硅質原料類(正式版)
- 醫院培訓課件:《分級護理制度》
- 外國建筑賞析智慧樹知到期末考試答案章節答案2024年清華大學
- 《殺雞儆猴》兒童繪本演講故事課件(圖文)
- 拓撲空間的維數理論
- 北京奧林匹克森林公園植物景觀與生態效益初探
- 房地產 -魔方公寓SOP標準手冊V1.7
評論
0/150
提交評論