吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷_第1頁
吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷_第2頁
吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷_第3頁
吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷_第4頁
吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省長春市第150中學2025屆高三下學期第五次調研考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.42.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.3.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.14.某個命題與自然數有關,且已證得“假設時該命題成立,則時該命題也成立”.現已知當時,該命題不成立,那么()A.當時,該命題不成立 B.當時,該命題成立C.當時,該命題不成立 D.當時,該命題成立5.設函數,的定義域都為,且是奇函數,是偶函數,則下列結論正確的是()A.是偶函數 B.是奇函數C.是奇函數 D.是奇函數6.在復平面內,復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.8.設,,分別是中,,所對邊的邊長,則直線與的位置關系是()A.平行 B.重合C.垂直 D.相交但不垂直9.已知函數滿足當時,,且當時,;當時,且).若函數的圖象上關于原點對稱的點恰好有3對,則的取值范圍是()A. B. C. D.10.已知函數在上單調遞增,則的取值范圍()A. B. C. D.11.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.12.設,是兩條不同的直線,,是兩個不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知是的中點,且,點滿足,則的取值范圍是_______.14.六位同學坐在一排,現讓六位同學重新坐,恰有兩位同學坐自己原來的位置,則不同的坐法有________種(用數字回答).15.已知函數是定義在上的奇函數,且周期為,當時,,則的值為___________________.16.已知數列與均為等差數列(),且,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.18.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.19.(12分)已知函數f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數x的取值范圍.20.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.21.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.22.(10分)在直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的直角坐標方程;(2)若點在曲線上,點在曲線上,求的最小值及此時點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

采用數形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.2.C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點睛】本題考查雙曲線離心率的求法,求雙曲線離心率問題,關鍵是建立三者間的方程或不等關系,本題是一道基礎題.3.C【解析】

①根據線性相關性與r的關系進行判斷,

②根據相關指數的值的性質進行判斷,

③根據方差關系進行判斷,

④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;

②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統計數據的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.4.C【解析】

寫出命題“假設時該命題成立,則時該命題也成立”的逆否命題,結合原命題與逆否命題的真假性一致進行判斷.【詳解】由逆否命題可知,命題“假設時該命題成立,則時該命題也成立”的逆否命題為“假設當時該命題不成立,則當時該命題也不成立”,由于當時,該命題不成立,則當時,該命題也不成立,故選:C.【點睛】本題考查逆否命題與原命題等價性的應用,解題時要寫出原命題的逆否命題,結合逆否命題的等價性進行判斷,考查邏輯推理能力,屬于中等題.5.C【解析】

根據函數奇偶性的性質即可得到結論.【詳解】解:是奇函數,是偶函數,,,,故函數是奇函數,故錯誤,為偶函數,故錯誤,是奇函數,故正確.為偶函數,故錯誤,故選:.【點睛】本題主要考查函數奇偶性的判斷,根據函數奇偶性的定義是解決本題的關鍵.6.B【解析】

化簡復數為的形式,然后判斷復數的對應點所在象限,即可求得答案.【詳解】對應的點的坐標為在第二象限故選:B.【點睛】本題主要考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.7.B【解析】

根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.8.C【解析】試題分析:由已知直線的斜率為,直線的斜率為,又由正弦定理得,故,兩直線垂直考點:直線與直線的位置關系9.C【解析】

先作出函數在上的部分圖象,再作出關于原點對稱的圖象,分類利用圖像列出有3個交點時滿足的條件,解之即可.【詳解】先作出函數在上的部分圖象,再作出關于原點對稱的圖象,如圖所示,當時,對稱后的圖象不可能與在的圖象有3個交點;當時,要使函數關于原點對稱后的圖象與所作的圖象有3個交點,則,解得.故選:C.【點睛】本題考查利用函數圖象解決函數的交點個數問題,考查學生數形結合的思想、轉化與化歸的思想,是一道中檔題.10.B【解析】

由,可得,結合在上單調遞增,易得,即可求出的范圍.【詳解】由,可得,時,,而,又在上單調遞增,且,所以,則,即,故.故選:B.【點睛】本題考查了三角函數的單調性的應用,考查了學生的邏輯推理能力,屬于基礎題.11.C【解析】

建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.12.D【解析】試題分析:,,故選D.考點:點線面的位置關系.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據函數知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數量積的定義的應用,以及余弦定理的應用,涉及到函數思想和分類討論思想的應用,解題關鍵是建立函數關系式,屬于中檔題.14.135【解析】

根據題意先確定2個人位置不變,共有種選擇,再確定4個人坐4個位置,但是不能坐原來的位置,計算得到答案.【詳解】根據題意先確定2個人位置不變,共有種選擇.再確定4個人坐4個位置,但是不能坐原來的位置,共有種選擇,故不同的坐法有.故答案為:.【點睛】本題考查了分步乘法原理,意在考查學生的計算能力和應用能力.15.【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數是定義在上的奇函數,.由周期為,可知,,..故答案為:.【點睛】本題主要考查函數的基本性質,屬于基礎題.16.20【解析】

設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,,解方程求出公差,代入等差數列的通項公式即可求解.【詳解】設等差數列的公差為,由數列為等差數列知,,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【點睛】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.18.(1)證明見解析(2)【解析】

(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.【點睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.19.≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當且僅當(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.20.見解析【解析】

(1)由題可得的所有可能取值為,,,,且,,,,所以的分布列為所以的數學期望.(2)由題可得,所以,又,,所以,所以是以為首項,為公比的等比數列.(3)由(2)可得.21.(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數值關系得到,進而求得數值;(2)由三角形的三個角的關系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論