貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題_第1頁
貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題_第2頁
貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題_第3頁
貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題_第4頁
貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省六校聯盟2025屆高三下學期2月教學質量檢測試題數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設平面與平面相交于直線,直線在平面內,直線在平面內,且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件2.中國古代數學著作《算法統宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里3.記集合和集合表示的平面區域分別是和,若在區域內任取一點,則該點落在區域的概率為()A. B. C. D.4.若復數滿足(為虛數單位),則其共軛復數的虛部為()A. B. C. D.5.函數的圖像大致為()A. B.C. D.6.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.某人用隨機模擬的方法估計無理數的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內投入粒豆子,并統計出這些豆子在曲線上方的有粒,則無理數的估計值是()A. B. C. D.8.設復數z=,則|z|=()A. B. C. D.9.已知復數滿足,其中為虛數單位,則().A. B. C. D.10.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為()A. B. C. D.211.給甲、乙、丙、丁四人安排泥工、木工、油漆三項工作,每項工作至少一人,每人做且僅做一項工作,甲不能安排木工工作,則不同的安排方法共有()A.12種 B.18種 C.24種 D.64種12.設是等差數列的前n項和,且,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知非零向量,滿足,且,則與的夾角為____________.14.在一次體育水平測試中,甲、乙兩校均有100名學生參加,其中:甲校男生成績的優秀率為70%,女生成績的優秀率為50%;乙校男生成績的優秀率為60%,女生成績的優秀率為40%.對于此次測試,給出下列三個結論:①甲校學生成績的優秀率大于乙校學生成績的優秀率;②甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率;③甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系不確定.其中,所有正確結論的序號是____________.15.已知以x±2y=0為漸近線的雙曲線經過點,則該雙曲線的標準方程為________.16.如圖所示,點,B均在拋物線上,等腰直角的斜邊為BC,點C在x軸的正半軸上,則點B的坐標是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)求函數的單調區間;(Ⅱ)當時,求函數在上最小值.18.(12分)已知,,(1)求的最小正周期及單調遞增區間;(2)已知銳角的內角,,的對邊分別為,,,且,,求邊上的高的最大值.19.(12分)某大學生在開學季準備銷售一種文具套盒進行試創業,在一個開學季內,每售出1盒該產品獲利50元,未售出的產品,每盒虧損30元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季進了160盒該產品,以(單位:盒,)表示這個開學季內的市場需求量,(單位:元)表示這個開學季內經銷該產品的利潤.(1)根據直方圖估計這個開學季內市場需求量的平均數和眾數;(2)將表示為的函數;(3)以需求量的頻率作為各需求量的概率,求開學季利潤不少于4800元的概率.20.(12分)某房地產開發商在其開發的某小區前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發商計劃從點出發建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.21.(12分)設函數,是函數的導數.(1)若,證明在區間上沒有零點;(2)在上恒成立,求的取值范圍.22.(10分)已知函數,其中,.(1)當時,求的值;(2)當的最小正周期為時,求在上的值域.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

試題分析:α⊥β,b⊥m又直線a在平面α內,所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點:充分條件、必要條件.2、C【解析】

設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.3、C【解析】

據題意可知,是與面積有關的幾何概率,要求落在區域內的概率,只要求、所表示區域的面積,然后代入概率公式,計算即可得答案.【詳解】根據題意可得集合所表示的區域即為如圖所表示:的圓及內部的平面區域,面積為,集合,,表示的平面區域即為圖中的,,根據幾何概率的計算公式可得,故選:C.【點睛】本題主要考查了幾何概率的計算,本題是與面積有關的幾何概率模型.解決本題的關鍵是要準確求出兩區域的面積.4、D【解析】

由已知等式求出z,再由共軛復數的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復數=-1+,虛部為1故選D.【點睛】本題考查復數代數形式的乘除運算和共軛復數的基本概念,屬于基礎題.5、A【解析】

根據排除,,利用極限思想進行排除即可.【詳解】解:函數的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數圖象的識別和判斷,利用函數值的符號以及極限思想是解決本題的關鍵,屬于基礎題.6、C【解析】

根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,

若,則,即成立,

若成立,則,即,

故“”是“”的充要條件,

故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.7、D【解析】

利用定積分計算出矩形中位于曲線上方區域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區域的面積,考查計算能力,屬于中等題.8、D【解析】

先用復數的除法運算將復數化簡,然后用模長公式求模長.【詳解】解:z====﹣﹣,則|z|====.故選:D.【點睛】本題考查復數的基本概念和基本運算,屬于基礎題.9、A【解析】

先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復數的基本運算,注意計算的準確度,屬于簡單題目.10、B【解析】

首先根據題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據圓柱的三視圖以及其本身的特征,將圓柱的側面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.11、C【解析】

根據題意,分2步進行分析:①,將4人分成3組,②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,將剩下的2組全排列,安排其他的2項工作,由分步計數原理計算可得答案.【詳解】解:根據題意,分2步進行分析:①,將4人分成3組,有種分法;②,甲不能安排木工工作,甲所在的一組只能安排給泥工或油漆,有2種情況,將剩下的2組全排列,安排其他的2項工作,有種情況,此時有種情況,則有種不同的安排方法;故選:C.【點睛】本題考查排列、組合的應用,涉及分步計數原理的應用,屬于基礎題.12、C【解析】

利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、(或寫成)【解析】

設與的夾角為,通過,可得,化簡整理可求出,從而得到答案.【詳解】設與的夾角為可得,故,將代入可得得到,于是與的夾角為.故答案為:.【點睛】本題主要考查向量的數量積運算,向量垂直轉化為數量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.14、②③【解析】

根據局部頻率和整體頻率的關系,依次判斷每個選項得到答案.【詳解】不能確定甲乙兩校的男女比例,故①不正確;因為甲乙兩校的男生的優秀率均大于女生成績的優秀率,故甲、乙兩校所有男生成績的優秀率大于甲、乙兩校所有女生成績的優秀率,故②正確;因為不能確定甲乙兩校的男女比例,故不能確定甲校學生成績的優秀率與甲、乙兩校所有學生成績的優秀率的大小關系,故③正確.故答案為:②③.【點睛】本題考查局部頻率和整體頻率的關系,意在考查學生的理解能力和應用能力.15、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據漸近線求雙曲線,設雙曲線方程為是解題的關鍵.16、【解析】

設出兩點的坐標,結合拋物線方程、兩條直線垂直的條件以及兩點間的距離公式列方程,解方程求得的坐標.【詳解】設,由于在拋物線上,所以.由于三角形是等腰直角三角形,,所以.由得,化為,可得,所以,解得,則.所以.故答案為:【點睛】本題考查拋物線的方程和運用,考查方程思想和運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析;(Ⅱ)當時,函數的最小值是;當時,函數的最小值是【解析】

(1)求出導函數,并且解出它的零點x=,再分區間討論導數的正負,即可得到函數f(x)的單調區間;

(2)分三種情況加以討論,結合函數的單調性與函數值的大小比較,即可得到當0<a<ln2時,函數f(x)的最小值是-a;當a≥ln2時,函數f(x)的最小值是ln2-2a.【詳解】函數的定義域

為.

因為,令,可得;

當時,;當時,,綜上所述:可知函數的單調遞增區間為,單調遞減區間為當,即時,函數在區間上是減函數,

的最小值是當,即時,函數在區間上是增函數,的最小值是當,即時,函數在上是增函數,在上是減函數.

又,

當時,的最小值是;

當時,的最小值為綜上所述,結論為當時,函數的最小值是;

當時,函數的最小值是.【點睛】求函數極值與最值的步驟:(1)確定函數的定義域;(2)求導數;(3)解方程求出函數定義域內的所有根;(4)列表檢查在的根左右兩側值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區間上的最值還需要比較端點值的函數值與極值的大小18、(1)的最小正周期為:;函數單調遞增區間為:;(2).【解析】

(1)根據誘導公式,結合二倍角的正弦公式、輔助角公式把函數的解析式化簡成余弦型函數解析式形式,利用余弦型函數的最小正周期公式和單調性進行求解即可;(2)由(1)結合,求出的大小,再根據三角形面積公式,結合余弦定理和基本不等式進行求解即可.【詳解】(1)的最小正周期為:;當時,即當時,函數單調遞增,所以函數單調遞增區間為:;(2)因為,所以設邊上的高為,所以有,由余弦定理可知:(當用僅當時,取等號),所以,因此邊上的高的最大值.【點睛】本題考查了正弦的二倍角公式、誘導公式、輔助角公式,考查了余弦定理、三角形面積公式,考查了基本不等式的應用,考查了數學運算能力.19、(1),眾數為150;(2);(3)【解析】

(1)由頻率直方圖分別求出各組距內的頻率,由此能求出這個開學季內市場需求量的眾數和平均數;(2)由已知條件推導出當時,,當時,,由此能將表示為的函數;(3)利用頻率分布直方圖能求出利潤不少于4800元的概率.【詳解】(1)由直方圖可估計需求量的眾數為150,由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:由直方圖可知的頻率為:∴估計需求量的平均數為:(2)當時,當時,∴(3)由(2)知當時,當時,得∴開學季利潤不少于4800元的需求量為由頻率分布直方圖可所求概率【點睛】本題考查頻率分布直方圖的應用,考查函數解析式的求法,考查概率的估計,是中檔題,解題時要注意頻率分布直方圖的合理運用.20、(1),;(2)米.【解析】

(1)過點作于點再在中利用正弦定理求解,再根據求解,進而求得.再根據確定的范圍即可.(2)根據(1)有,再設,求導分析函數的單調性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調遞增;當時,單調遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數在實際中的應用,需要根據題意建立角度與長度間的關系,進而求導分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論