2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編_第1頁
2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編_第2頁
2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編_第3頁
2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編_第4頁
2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆北京市西城35中高三下學(xué)期數(shù)學(xué)試題分類匯編注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,則的大小關(guān)系為A. B. C. D.2.一物體作變速直線運(yùn)動,其曲線如圖所示,則該物體在間的運(yùn)動路程為()m.A.1 B. C. D.23.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進(jìn)行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,184.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在中,是的中點(diǎn),,點(diǎn)在上且滿足,則等于()A. B. C. D.6.已知,則下列不等式正確的是()A. B.C. D.7.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.8.如圖是正方體截去一個四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.9.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.10.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.11.若(),,則()A.0或2 B.0 C.1或2 D.112.已知函數(shù),為的零點(diǎn),為圖象的對稱軸,且在區(qū)間上單調(diào),則的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為__________.14.已知向量,且向量與的夾角為_______.15.請列舉用0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字且比210大的所有三位奇數(shù):___________.16.設(shè),滿足約束條件,則的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,已知點(diǎn),若以線段為直徑的圓與軸相切.(1)求點(diǎn)的軌跡的方程;(2)若上存在兩動點(diǎn)(A,B在軸異側(cè))滿足,且的周長為,求的值.18.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.19.(12分)某超市在節(jié)日期間進(jìn)行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機(jī)會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.20.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.21.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,圓的方程為.(1)寫出直線的普通方程和圓的直角坐標(biāo)方程;(2)若點(diǎn)坐標(biāo)為,圓與直線交于兩點(diǎn),求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計(jì)算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項(xiàng).點(diǎn)睛:對于指數(shù)冪的大小的比較,我們通常都是運(yùn)用指數(shù)函數(shù)的單調(diào)性,但很多時(shí)候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進(jìn)行比較.這就必須掌握一些特殊方法.在進(jìn)行指數(shù)冪的大小比較時(shí),若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準(zhǔn)確.2.C【解析】

由圖像用分段函數(shù)表示,該物體在間的運(yùn)動路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動的路程公式,可得.所以物體在間的運(yùn)動路程是.故選:C【點(diǎn)睛】本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3.A【解析】

利用統(tǒng)計(jì)圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點(diǎn)睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意統(tǒng)計(jì)圖的性質(zhì)的合理運(yùn)用.4.B【解析】

首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.5.B【解析】

由M是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M(jìn)是BC的中點(diǎn),知AM是BC邊上的中線,又由點(diǎn)P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點(diǎn)睛】判斷P點(diǎn)是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點(diǎn).②性質(zhì):或取得最小值③坐標(biāo)法:P點(diǎn)坐標(biāo)是三個頂點(diǎn)坐標(biāo)的平均數(shù).6.D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng).【詳解】已知,賦值法討論的情況:(1)當(dāng)時(shí),令,,則,,排除B、C選項(xiàng);(2)當(dāng)時(shí),令,,則,排除A選項(xiàng).故選:D.【點(diǎn)睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項(xiàng),得到符合條件的選項(xiàng),是一種簡單有效的方法,屬于中等題.7.C【解析】

對任意的總有恒成立,因?yàn)?,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時(shí),當(dāng),當(dāng)時(shí),故選:C.【點(diǎn)睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計(jì)算能力,屬于難題.8.C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.9.C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.10.C【解析】

連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.11.A【解析】

利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點(diǎn)睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.12.B【解析】

由題意可得,且,故有①,再根據(jù),求得②,由①②可得的最大值,檢驗(yàn)的這個值滿足條件.【詳解】解:函數(shù),,為的零點(diǎn),為圖象的對稱軸,,且,、,,即為奇數(shù)①.在,單調(diào),,②.由①②可得的最大值為1.當(dāng)時(shí),由為圖象的對稱軸,可得,,故有,,滿足為的零點(diǎn),同時(shí)也滿足滿足在上單調(diào),故為的最大值,故選:B.【點(diǎn)睛】本題主要考查正弦函數(shù)的圖象的特征,正弦函數(shù)的周期性以及它的圖象的對稱性,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.3【解析】

分別用1和進(jìn)行分類討論即可【詳解】當(dāng)?shù)谝粋€因式取1時(shí),第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;當(dāng)?shù)谝粋€因式取時(shí),第二個因式應(yīng)取含的項(xiàng),則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點(diǎn)睛】本題考查二項(xiàng)式定理中具體項(xiàng)對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題14.1【解析】

根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.15.231,321,301,1【解析】

分個位數(shù)字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數(shù)字所組成的無重復(fù)數(shù)字比210大的所有三位奇數(shù)有:(1)當(dāng)個位數(shù)字是1時(shí),數(shù)字可以是231,321,301;(2)當(dāng)個位數(shù)字是3時(shí)數(shù)字可以是1.故答案為:231,321,301,1【點(diǎn)睛】本題考查了分類計(jì)數(shù)法的應(yīng)用,考查了學(xué)生分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.16.29【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為以原點(diǎn)為圓心的圓,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標(biāo)函數(shù)是以原點(diǎn)為圓心,以為半徑的圓,由圖可知,此圓經(jīng)過點(diǎn)A時(shí),半徑最大,此時(shí)也最大,最大值為.所以本題答案為29.【點(diǎn)睛】線性規(guī)劃問題,首先明確可行域?qū)?yīng)的是封閉區(qū)域還是開放區(qū)域、分界線是實(shí)線還是虛線,其次確定目標(biāo)函數(shù)的幾何意義,是求直線的截距、兩點(diǎn)間距離的平方、直線的斜率、還是點(diǎn)到直線的距離等等,最后結(jié)合圖形確定目標(biāo)函數(shù)最值取法、值域范圍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)設(shè),則由題設(shè)條件可得,化簡后可得軌跡的方程.(2)設(shè)直線,聯(lián)立直線方程和拋物線方程后利用韋達(dá)定理化簡并求得,結(jié)合焦半徑公式及弦長公式可求的值及的長.【詳解】(1)設(shè),則圓心的坐標(biāo)為,因?yàn)橐跃€段為直徑的圓與軸相切,所以,化簡得的方程為.(2)由題意,設(shè)直線,聯(lián)立得,設(shè)(其中)所以,,且,因?yàn)?,所以,,所以,故或(舍),直線,因?yàn)榈闹荛L為所以.即,因?yàn)?又,所以,解得,所以.【點(diǎn)睛】本題考查曲線方程以及拋物線中的弦長計(jì)算,還涉及到向量的數(shù)量積.一般地,拋物線中的弦長問題,一般可通過聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把已知等式化為關(guān)于兩個的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為某一個變量的方程.本題屬于中檔題.18.(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.19.(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時(shí)的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.20.(1)曲線表示的是焦點(diǎn)為,準(zhǔn)線為的拋物線;(2)8.【解析】試題分析:(1)將曲線的極坐標(biāo)方程為兩邊同時(shí)乘以,利用極坐標(biāo)與直角坐標(biāo)之間的關(guān)系即可得出其直角坐標(biāo)方程;(2)由直線經(jīng)過點(diǎn),可得的值,再將直線的參數(shù)方程代入曲線的標(biāo)準(zhǔn)方程,由直線參數(shù)方程的幾何意義可得直線被曲線截得的線段的長.試題解析:(1)由可得,即,∴曲線表示的是焦點(diǎn)為,準(zhǔn)線為的拋物線.(2)將代入,得,∴,∵,∴,∴直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論