河北省臨西縣2025屆高三下學期高考模擬(三)數學試題含解析_第1頁
河北省臨西縣2025屆高三下學期高考模擬(三)數學試題含解析_第2頁
河北省臨西縣2025屆高三下學期高考模擬(三)數學試題含解析_第3頁
河北省臨西縣2025屆高三下學期高考模擬(三)數學試題含解析_第4頁
河北省臨西縣2025屆高三下學期高考模擬(三)數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省臨西縣2025屆高三下學期高考模擬(三)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.2.若集合,,則下列結論正確的是()A. B. C. D.3.已知集合,則全集則下列結論正確的是()A. B. C. D.4.世紀產生了著名的“”猜想:任給一個正整數,如果是偶數,就將它減半;如果是奇數,則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數的值為,則輸出的的值是()A. B. C. D.5.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.626.已知滿足,則()A. B. C. D.7.設雙曲線(a>0,b>0)的一個焦點為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標準方程為()A. B.C. D.8.若實數x,y滿足條件,目標函數,則z的最大值為()A. B.1 C.2 D.09.拋物線的準線方程是,則實數()A. B. C. D.10.已知復數z滿足i?z=2+i,則z的共軛復數是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i11.()A. B. C. D.12.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.14.數列滿足,則,_____.若存在n∈N*使得成立,則實數λ的最小值為______15.已知點是雙曲線漸近線上的一點,則雙曲線的離心率為_______16.函數過定點________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.18.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).19.(12分)已知中,角所對邊的長分別為,且(1)求角的大??;(2)求的值.20.(12分)已知數列的前項和為,且點在函數的圖像上;(1)求數列的通項公式;(2)設數列滿足:,,求的通項公式;(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;21.(12分)已知函數,其中,為自然對數的底數.(1)當時,證明:對;(2)若函數在上存在極值,求實數的取值范圍。22.(10分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.2.D【解析】

由題意,分析即得解【詳解】由題意,故,故選:D本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數學運算能力,屬于基礎題.3.D【解析】

化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.4.C【解析】

列出循環的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數不成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,成立,跳出循環,輸出的值為.故選:C.本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.5.B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.6.A【解析】

利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.7.C【解析】

由題得,,又,聯立解方程組即可得,,進而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標準方程為.故選:C本題主要考查了雙曲線的簡單幾何性質,圓的方程的有關計算,考查了學生的計算能力.8.C【解析】

畫出可行域和目標函數,根據平移得到最大值.【詳解】若實數x,y滿足條件,目標函數如圖:當時函數取最大值為故答案選C求線性目標函數的最值:當時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最?。划敃r,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.9.C【解析】

根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C本題考查拋物線與準線的方程.屬于基礎題.10.D【解析】

兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復數為1+2i,選D.的共軛復數為11.D【解析】

利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.12.D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

依題意畫圖,設,根據圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.14.【解析】

利用“退一作差法”求得數列的通項公式,將不等式分離常數,利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).本小題主要考查根據遞推關系式求數列的通項公式,考查數列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.15.【解析】

先表示出漸近線,再代入點,求出,則離心率易求.【詳解】解:的漸近線是因為在漸近線上,所以,故答案為:考查雙曲線的離心率的求法,是基礎題.16.【解析】

令,,與參數無關,即可得到定點.【詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節省解題時間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.18.見解析【解析】

若選擇①,結合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結合三角形的面積公式,得,化簡得到,則,又,從而得到,則.19.(1);(2).【解析】

(1)正弦定理的邊角轉換,以及兩角和的正弦公式展開,特殊角的余弦值即可求出答案;(2)構造齊次式,利用正弦定理的邊角轉換,得到,結合余弦定理得到【詳解】解:(1)由已知,得又∵∴∴,因為得∵∴.(2)∵又由余弦定理,得∴1.考查學生對正余弦定理的綜合應用;2.能處理基本的邊角轉換問題;3.能利用特殊的三角函數值推特殊角,屬于中檔題20.(1)(2)當n為偶數時,;當n為奇數時,.(3)【解析】

(1)根據,討論與兩種情況,即可求得數列的通項公式;(2)由(1)利用遞推公式及累加法,即可求得當n為奇數或偶數時的通項公式.也可利用數學歸納法,先猜想出通項公式,再用數學歸納法證明.(3)分類討論,當n為奇數或偶數時,分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當時,,當時,也滿足上式.所以.(2)解法一:由(1)可知,即.當時,,①當時,,所以,②當時,,③當時,,所以,④……當時,n為偶數當時,n為偶數所以以上個式子相加,得.又,所以當n為偶數時,.同理,當n為奇數時,,所以,當n為奇數時,.解法二:猜測:當n為奇數時,.猜測:當n為偶數時,.以下用數學歸納法證明:,命題成立;假設當時,命題成立;當n為奇數時,,當時,n為偶數,由得故,時,命題也成立.綜上可知,當n為奇數時同理,當n為偶數時,命題仍成立.(3)由(2)可知.①當n為偶數時,,所以隨n的增大而減小從而當n為偶數時,的最大值是.②當n為奇數時,,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對于任意的,不等式恒成立,只需,故實數的取值范圍是.本題考查了累加法求數列通項公式的應用,分類討論奇偶項的通項公式及求和方法,數學歸納法證明數列的應用,數列的單調性及參數的取值范圍,屬于難題.21.(1)見證明;(2)【解析】

(1)利用導數說明函數的單調性,進而求得函數的最小值,得到要證明的結論;(2)問題轉化為導函數在區間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數的單調性及值域,從而得到結論.法二:構造函數,利用函數的導數判斷函數的單調性求得函數的值域,再利用零點存在定理說明函數存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數為上的增函數,于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;所以為函數的極小值點;②當時,在上成立,所以在上單調遞增,所以在上沒有極值;③當時,在上成立,所以在上單調遞減,所以在上沒有極值,綜上所述,使在上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論