




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
本科生畢業設計(論文)題目:陳四樓煤礦2.4Mt/a新井設計綜采工作面過斷層技術研究摘要本設計包括三個部分:一般部分、專題部分和翻譯部分。一般部分為陳四樓煤礦2.4Mt/a新井設計。陳四樓煤礦位于河南省永城市境內,交通便利。井田走向(南北)長約13km,傾向(南北)長約6.7km,總面積為61km2。主采煤層為二2煤,煤層傾角為8~23,平均傾角11,平均煤厚為3.5m。井田地質條件較為簡單。井田工業儲量為28207萬t,可采儲量為20454萬t。礦井設計生產能力為2.4Mt/a。礦井服務年限為65.56a,涌水量較大,礦井正常涌水量為894m3/h,最大涌水量為1087m3/h。礦井瓦斯相對涌出量為0.57m3/t,絕對涌出量為2.0m3/min,為低瓦斯礦井。井田開拓方式為立井兩水平開拓,暗斜井延伸。采用膠帶輸送機運煤,采用礦車進行輔助運輸。礦井通風方式為兩翼對角式通風。礦井年工作日為330d,工作制度為“三八”制。一般部分共包括10章:1、礦區概述與地質特征;2、井田境界和儲量;3、礦井工作制度、設計生產能力及服務年限;4、井田開拓;5、準備方式——帶區巷道布置;6、采煤方法;7、井下運輸;8、礦井提升;9、礦井通風與安全;10、設計礦井基本技術經濟指標。專題部分題目是綜采工作面過斷層技術研究,主要是研究了綜采工作面過斷層的方法及相關頂板管理控制技術,對綜采工作面過斷層技術做了全面的陳述。翻譯部分主要內容是關于水壓控制爆破用于水力致裂技術用來增加煤巖體孔隙率的研究,英文題目為:Hydraulicfracturingafterwaterpressurecontrolblastingforincreasedfracturing關鍵詞:立井;兩水平開拓;采區;兩翼對角式通風
ABSTRACTThisdesignincludesthreeparts:thegeneralpart,thespecialsubjectpartandthetranslationpart.ThegeneralpartisanewdesignforChensiloumine.ChensiloumineislocatedinYongchengwhichcomeswithinthejurisdictionofShangqiuinHenanprovince.Itisveryconvenienttogettothemineintermsofbothhighwayandrailway.Thelengthofthecoalfieldis13km,thewidthisabout6.7km,andthetotalareais61km2.Thesecondisthemaincoalseams,anditsdipangleis8~23degree.Thethicknessofthemineisabout3.5minall.Thegeologicstructureofthiscoalfieldissimple.Therecoverablereservesofthecoalfieldare282.07milliontons,andtheminablereservesare204.54milliontons.Thedesignedproductivecapacityis24milliontonspercentyear,andtheservicelifeofthemineis65.56years.Thenormalflowofthemineis894m3perhourandthemaxflowofthemineis1087m3perhour.Therelativeminegasgushis0.57m3/tandtheabsolutegushis2.0m3/min,soitisalowgasmine.Themineistwoleveltodevelop.TecentrallanewayusesBeltConveyortotransitcoal,andtrolleywagonsareusedforaccessorialtransportationintheroadway.Theventilationmodeofthismineistwowingsdiagonalform.The“three-eight”workingsystemisusedintheChensiloumine.Itproducesfor330daysayear.Thisdesignincludestenchapters:1.Anoutlineoftheminefieldgeology;2.Boundaryandthereservesofmine;3.Theservicelifeandworkingsystemofmine;4.developmentengineeringofcoalfield;5.Thelayoutofpanels;6.Themethodusedincoalmining;7.Undergroundtransportationofthemine;8.Theliftingofthemine;9.Theventilationandthesafetyoperationofthemine;10.Thebasiceconomicandtechnicalnormsofthedesignedmine.ThetopicofspecialsubjectpartsistheAnalysisofFacetoAcrosstheFaultTechnologyinMechanizedMiningFace.ItmakesafullycomprehensivestatementoffacetoacrossthefaultTechnologyinmechanizedminingface.TranslationpartisaboutHydraulicfracturingandwaterpressurecontrol.TheEnglishtitleis“Hydraulicfracturingafterwaterpressurecontrolblastingforincreasedfracturing”.Keywords:Shaft;twolevel;Panel;Twowingsdiagonalventilation
一般部分1礦區概述及井田地質特征 頁英文原文HydraulicfracturingafterwaterpressurecontrolblastingforincreasedfracturingBingxiangHuang,ChangyouLiu,JunhuiFu,HuiGuanSchoolofMines,ChinaUniversityofMiningandTechnology,South3rdRingRoad,Xuzhou,Jiangsu221116,ChinaAbstract:Traditionalhydraulicfracturingtechniquesgenerallyformmainhydrauliccracksandairfoilbranchfissures,butmainhydrauliccracksarerelativelyfewinnumber.Hydraulicfracturingafterwaterpressurecontrolblastingcantransformthestructureofcoalandrockmass.Experimentsprovethatitisaneffectivemethodforincreasingthenumberandrangeofhydrauliccracks,aswellasforimprovingthepermeabilityofcoalseams.Thetechnicalprincipleisasfollows.First,aholeisdrilledinthecoalseamandisinjectedwithagelexplosive(aminingwater-proofexplosive).Then,waterisinjectedintotheholetosealit,atlowenoughpressuretopreventcracksfromforming.Third,waterpressureblastingisdonebydetonatingtheexplosive.Thewatershockwavesandbubblepulsationsproducedbytheexplosioncauseahighstrainrateintherockwallsurroundingthehole.Whenthestressimposedontherockwallsurroundingtheholeexceedsitsdynamiccriticalfracturestrength,thesurroundingrockbreaksandnumerouscircumferentialandradialfracturespropagateoutward.Lastly,waterinjectionprocesses,suchasgeneralinjection,pulseinjection,and/orcyclicinjection,arecarriedouttopromotehydraulicfracturing.Dependingonthefissurewaterpressure,detonationfissurescontinuetoexpandandadditionalhydraulicfractureswithawiderrangeareformed.Undertheeffectofdetonationpressure,jointsandfissuresinthecoalmassopenandpropagate,leadingtoreducedadhesiveforcesonstructuralsurfacesandtherebyenhancingcoalcutting.Therefore,thismethodimprovesthepermeabilityofthecoalseam,effectivelyweakensthestrengthofthecoalandrockmass,andreducesthesurroundingrockstressoftheweakenedarea,effectivelysolvingtheproblemofhavingasmallnumberofbigcracks.Itisausefultechnicalapproachforimprovingtopcoalcaving,preventingrockburst,preventingcoalandgasoutbursts,andraisingthegasextractionefficiencyincolliery.Keywords:Hydraulicfracturing;Waterpressureblasting;Crackpropagation1IntroductionLow-permeabilitycoal-seamgasextraction;hard,thickcoal-seamfullymechanizedtopcoalcaving;androckburstcontrolaretechnicalchallengesincollieryatpresent.Hydraulicfracturingisaneffectivetechnicalapproachtoresolvethesechallenges[1].Thestructureofcoalandrockmassisalteredthroughhydraulicfracturing,whichcanincreasecracksincoalandrockmassimprovepermeability,andweakenstrengthtoreduceanyrockburstingliability.Afterdecadesofdevelopment,morestudyonhydraulicfracturinghasbeenconductedbothinChinaandelse-where[2–14].Simulationexperimentsandfieldinvestigationsofhydraulicfracturingshowthatthetraditionalhydraulicfracturinginnumber.Inthecaseofhomogeneousrock,asinglehydraulicmaincrackisgenerallygeneratedandcracksaremainlyconcen-tratedinabandaroundthehydraulicmaincrack,whoseextentissmall.However,toimprovehard,thicktopcoalcavability,handlehardroof,preventrockburst,increasepermeabilityofgassycoalseams,andpreventcoalandgasoutbursts,fullre-formationofthestructureofcoalandrockmassbyhydraulicfracturingisneeded.Thisrequiresthathydraulicfracturingproducemorehydrauliccracks,i.e.,increasethenumberofhydrauliccracks.Therefore,thereisanurgentneedtostudyhydrauliccontrolfracturingtechnologytoincreasethenumberofhydrauliccracks,whichhasimportanttheoreticalandpracticalsignificanceinguaranteeingefficientandsafecollieryproduction.Commonexplosivesblastingforgassycoalseamshassafetyrisks,sotheyarenotsuitable.Waterpressureblasting,developedinthepastcenturyasakindofcontrolledblastingmethod,caneffectivelycontrolthegenerationofblastingflyingrocks,airshockwaves,blastingtremors,anddetonationtoxicgases[15–18].Waterpressureblastingisagun-holeblastingtechnologythatuseswaterasacouplingmediumbetweenthecartridgeandthechargeholetotechniquesmainlyformwaterpressuremaincracksandairfoilbranchfissures,butwaterpressuremaincracksarerelativelyfewinnumber.Inthecaseofhomogeneousrock,asinglehydraulicmaincrackisgenerallygeneratedandcracksaremainlyconcern-tratedinabandaroundthehydraulicmaincrack,whoseextentissmall.However,toimprovehard,thicktopcoalcavability,handlehardroof,preventrockburst,increasepermeabilityofgassycoalseams,andpreventcoalandgasoutbursts,fullre-formationofthestructureofcoalandrockmassbyhydraulicfracturingisneeded.Thisrequiresthathydraulicfracturingproducemorehydrauliccracks,i.e.,increasethenumberofhydrauliccracks.Therefore,thereisanurgentneedtostudyhydrauliccontrolfracturingtechnologytoincreasethenumberofhydrauliccracks,whichhasimportanttheoreticalandpracticalsignificanceinguaranteeingefficientandsafecollieryproduction.Commonexplosivesblastingforgassycoalseamshassafetyrisks,sotheyarenotsuitable.Waterpressureblasting,developedinthepastcenturyasakindofcontrolledblastingmethod,caneffectivelycontrolthegenerationofblastingflyingrocks,airshockwaves,blastingtremors,anddetonationtoxicgases[15–18].Waterpressureblastingisagun-holeblastingtechnologythatuseswaterasacouplingmediumbetweenthecartridgeandthechargeholetotransfertheexplosionpressureandenergyatthemomentoftheexplosiontobreakuprock.Theprincipalcharacteristicsofwaterareexploitedasfollows.Sincewaterisdifficulttocompress,deformationenergylossesarelowandenergytransmissionefficiencybecomeshigh.Wateractstodeliveruniformpressure,makingthepressureonthesurroundingmediumrelativelysmoothandevenlydistributed,leadingtoevenbreakingofthesurroundingrockandgreatlyreducingtheharmfuleffectsofblasting.However,thecompressionratioofwaterexceedsthatofrockunderhighpressureandwateralsoactsasthebufferlayerbetweentheexplosiveproductsandtherockmass.Notonlydoesthisbufferlayerextendtheinteractiontimeoftheshockwaveontherock,butitalsocanreduceoreliminatetheenergylossintheplasticdeformationzonegeneratedintherockmass.Waterpressureblastingiscurrentlyamorematuretechnologyinfieldssuchastunnelexcavationandprojectdemolition.Inrecentyears,theapplicationofwaterpressureblastingtocollieryhasstartedinChinaandelsewhere[19,20].IntheformerSovietUnion,coal-seampre-injectioninternalexplosionswereconductedbyusingan8-m-deepholeof40mmdiametertopreventcoalandgasoutburstsinagentlyinclinedthincoalseamandamediumthickcoalseam.InChinaattemptsweremadetocreatecracksbywaterpressureblastingtoimprovethecoal-seamgasdrainagerate[21].Inviewoftheproblemsofexistingtechnology,apreliminarytesthasbeenconductedtoexploittheadvantagesofwaterpressureblastingandhydraulicfracturing.Thetestresultsshowthathydraulicfracturingafterwaterpressureblastingcanincreasethenumberandrangeofhydrauliccracksefficiently.Basedonpreliminarystudiesandtestresults,theauthorhasproposedtheuseofwaterpressurecontrolblastingforincreasingpermeabilityandweakeningstrengthasaresultofhydraulicfracturing.2.UsingwaterpressurecontrolblastingtoincreasepermeabilitythroughhydraulicfracturingWaterpressurecontrolblastinginduceshydraulicfracturingintheboreholeofacoal-rockseam,whichchangesthestructureofthecoal-rockmassandincreasesthenumberandrangeofhydrauliccracks,therebyincreasingpermeabilityandweakeningstrength.Thetechniqueinvolvesthefollowingsteps:(a)Drillaboreholeforhydraulicfracturingweakeningwithadrillingrig,injectanadequateamountofgelexplosive(awater-proofmineexplosive),andpulltheleadwireoutoftheborehole.(b)Aftersealinguptheboreholeorificewithholepackerorcementmortar,injectwaterintotheholeuntilitfillstheholeorreachesapressurevaluebelowthatwhichwouldgeneratewaterpressurecracks.Atthismoment,theinitialwaterpressureintheboreholemustbelessthantheorificerupturewaterpressure:whereistheminimumprincipalstressofthecrustalstressfieldaroundtheborehole,isthemaximumone,andisthetensilestrengthoftheboreholerock.(c)Detonatetheexplosivetocarryoutwaterpressureblasting.Thewatershockwavesandbubblepulsationsproducedbytheexplosionwillcauseahighstrainrateintherockwallsurround-ingthehole.Whenthestressimposedonthesurroundingrockwallexceedsitsdynamiccriticalfracturestrength,therockrupturesandgeneratesabundantcircumferentialandradialfracturessurroundingtheborehole.Meanwhile,becauseoftherock’selasticity,thehole’sinfluenceonthesurroundingrockstressdistributionisabout3–5timestheboreholediameter.Undertheeffectofsubsequentwaterpressure,cracksareinitiatedinthewalloftheholewhentheeffectivetangentialtensilestressofthewallexceedstherocktensilestrength.However,foragivencrustalstressfield,thepositionofthemaximumeffectivetangentialtensilestressoftheboreholewallisaconstant.Therefore,toincreasethedifferenceofhydrauliccrackinitiationbetweenthefollow-upboreholehallandtheblastingcracksandmaketheblastingcrackscrazepreferentially,thelengthofblastingcracksmustbegreaterthan3–5timestheboreholediameter.(d)Then,performwaterinjectionprocessessuchasgeneralinjection,pulseinjection,andcycleinjectiontocarryouthydraulicfracturing.Dependingonthefissurewaterpressure,blastingcrackscontinuetoexpandandmorewaterpressurefractureswithawiderrangeareformed.Thesurroundingrockloosingzoneofcollieryroadwayorgrottoforconstructingaboreholeisgenerally1.5–2.0m.Becausethewaterpressureinducedbywaterpressureblastingisgreat,thesealinglengthinthecompletesurroundingrocksectionoftheboreholemustbegreaterthan2m.Theboreholelengthforinstallingthegelexplosivemustexceed1m.Thus,theundergroundfracturingboreholedepthincollieryshouldnotbelessthan5m.Thestructureofcoalandrockmassisre-formedbyhydraulicblastingcontrolfracturing,leadingtoanincreasednumberofhydrauliccracks,anincreaseinthepermeabilityofthecoalseam,anefficientweakeningofthestrengthofcoalandrockmass,andareductioninthesurroundingrockstressoftheweakenedarea.Thiseffectivelysolvestheproblemofhavingasmallnumberofbigcracks.Thereareanumberofbeneficialeffectsfromthisprocess.Theweakeningofthehardcoalcanimprovetopcoalcapability,reducetheriskofrockburst,increasetherangeofcoal-seamfracturingcracks,makegasextractioneasier,andpreventcoalandgasoutbursts,allofwhichareimportantinguaranteeingefficientandsafecollieryproduction.3.Experimentalscheme3.1.ExperimentalsystemWedevelopedatruetriaxialhydraulicfracturingexperimentalsystem.Thesystemconsistsofanexperiment-benchframework,aloadingsystem,andamonitoringsystem.Themaintechnicalindicatorsareasfollows:(1)thetruetriaxialstressisloadedoncubicsamplestosimulatecrustalstress;thepressurefromtheloadingplateinthreedirectionscanreach4000kN.(2)Thesizeofthecubicspecimenisor.(3)Thewaterpressureforboreholefracturingcanreach70MPa.Duringboreholefracturing,parameterssuchaswater(liquid)pressureandflowaremonitoredbyanIntelligentVortexFlow-meterconnectedtothecomputer,usingestablishedproceduresfordatacollectionandstorage.Duringthefracturingsimulation,thecrackpropagationprocessandgeometricmorphologyaremonitoredbyaDisp-type24-channelacousticemissioninstrument,anRSMacousticinstrument,andaTDS-6Micro-seismicacquisitionsystem.3.2.ExperimentalmethodThesimulationexperimentadoptsasidelengthof500mmforthecubicspecimenmixedwithcoalandbriquette.(Theoriginalcoalsizeisabout.)Aparametertestofthemechanicalpropertiesofbothcoalandbriquetteofdifferentratioshasbeenconductedtoensurethatthestiffness,strength,andotherpropertiesofthebriquetteareassimilartocoal’sasfaraspossible.Thequalityratioofthesimulatedsampleisdeterminedascoalpowder:cement:plaster:water?0.5:1:1:0.8anditsmechanicalpropertiesareshowninTable1.Afterthespecimenhasnaturallydried,aboreholeof30cminlengthisdrilledatthecenteroftheuppersurfaceofthespecimenandthenSHZbarglueisusedtobondthedevicebondtotheboreholewalltocompletethesealingwhilethesealingdepthreaches20cm.Weoriginallyplannedtouseelectricdetonatorstocarryoutthesimulationexperimentofhydraulicblastingcontrolfracturing.Theexplosiveamount(1g)ineachelectricdetonatorismodestandthedetonatorscanbedetonatedinwatertoachievethepurposeofblastingaftersealingunderwaterpressure.Thus,anelectricdetonatoristheidealblastingequipmentforthesimulationexperiment.However,becausethepublicsecuritysectorstrictlycontrolselectricdetonators,itishardtoobtainblastingelectricdetonators.Therefore,thelargefirecrackershowninFig.1bwasusedasblastingequipmentforthesimulationexperiment.Thehydraulicblastingcontrolfracturingissimplifiedintotwostagestosimulate(1)blastingintheboreholeand(2)hydraulicfracturing.Thesimulatedstressfieldconditionis,,andandthestressdirectionisshowninFig.1c.Redposterdyeisaddedtothewatertanktomakeiteasiertoobservethehydraulicfracturemorphology.Duringtheexperiment,amicroseismicinstrumentisusedtomonitormicroseismicinformationofthespecimen;thetriggerthreshold(STA/LTAratio)ofamicroseismiceventis1.2,andtheamplituderangereaches500mAwithanSTA/LTAtimewindowof(0.1s)/(1s).Atthesametime,acousticemissionandelectromagneticradiationaremonitoredduringtheexperiment.Anacousticemissionprobe(R.45)placedintheexperimentalframeworkcloselystickstothespecimenandanelectromagneticradiationprobestaysclosetotheoutersteelringoftheexperimentalframework.Anacousticemissioninstrumentusestheacousticemissionprobeandtheelectromagneticradiationprobetotakesamplesatthesametime.Thefrequencydomainfoftheelectro-magneticradiationprobeis30kHz.Thesamplingfrequencyboththepre-amplifier(BP-SYS)andtheacousticemissionprobeis5MHz;thetriggerthresholdoftheelectromagneticradiationprobeis20dB,thetriggerthresholdoftheacousticemissionprobeis39dB,andthepre-ampgainis60dBforboth.Thehigh-passfilteroftheelectromagneticradiationprobeissetto20kHzandthehigh-passfilteroftheacousticemissionprobeis1kHz.Thelow-passfiltersforbotharesetto400kHz.Tocomparewiththeresultsofcommonhydraulicfracturingincoalandrockmass,onecommonhydraulicfracturingsimulationexperimentoffissuredcoalandrockmassunderthesamesimulatedcrustalstressandqualityratioofsamplehasbeenconducted.4.Analysisofresults4.1.Crackpropagationprocessofhydraulicfracturingafterwaterpressurecontrolblasting4.1.1.BlastingAfterthelargefirecrackershowninFig.1bislit,itisputatthebottomofthedrillholeandthenthesquareironpadof70.2kgcontainingtheexperimentframeworkissettocovertheorificeareaofthespecimen.ThetypicalmicroquakesmonitoredduringtheexperimentareshowninFig.2,wheretheabscissaplotstime,everysmalldivisionstandsfor0.1s,andthetotaltimeshownis5s.Inthefigure,thefirsteventisthequakecausedbythesquareironpadafterlightingthefirecracker;thesecondeventisthemicroquakeeventcausedbyblasting;thethirdeventmarkstheupwardjumpoftheironpadcausedbythedetonationgasaftertheexplosion.Aftersixblastsatthebottomofthedrillhole,thespecimensurfaceshowsnovisiblecracksandisstillintegrated.Thespecimenisthenplacedonthetestdeskforthehydraulicfracturingexperimentaftersealing.4.1.2.HydraulicfracturingThewaterpressureandacoustic–electriceffectduringhydraulicfracturingafterblastingareshowninFig.4.Atotalofsevenwaterinjectionfracturingexperimentswereconducted.Forthefirsttwo,thepressurewascontrolledmanually;forthelastfive,ahighhydraulicpressurewaspre-setbyastabilizerandwaterinjectionfracturingwithhighflowwascarriedoutbypressureoutputswitches.Whenthehydraulicpressureofthefirstwaterinjectionfracturingreaches1.1775MPa,aturningpointinthehydraulicpressurecurveappears(Fig.3b).Atthismoment,boththepulsenumberandtheamplitudeoftheelectromagneticradiationshowasmallpeak(Fig.3eandf),indicatingthatthedrillholewallruptures(ortheoriginalblastingcracksopenandburst),meaningthatthehydraulicpressureofruptureis1.1775MPa.Afterthehydraulicpressurereaches1.4775MPa,itthendecreases,showingthatthehydraulicfracturepropagatesatthistime.Afterthehydraulicpressurereachesamaximumof1.5375MPa,itfallsto1.4075MPawitharelativelyhighspeed,meaningthatthehydraulicfracturepropagateswithalargescale.Whenthehydraulicpressurebecomesabout1.40775MPa,itremainsconstantfor9sandthensharplydeclines.Meanwhile,boththepulsenumberandtheamplitudeofelectromagneticradiationhavesignificantpeaksandthedeformationandfailureofcoalandrockmassareexacerbated.Inthesecondwaterinjectionbymanualcontrol,whenthehydraulicpressurereaches1.2575MPa,thesamesituationaswiththefirstinjectionfracturingappears.Thehydraulicpressureexhibitsaturningpoint,whichindicatesrenewedopeningofthehydrauliccrack.Afterward,thehydraulicpressurerisesto1.4075MPaanditdeclinesstablyinonly3s.Thehydrauliccrackperforatesthroughthespecimensurfacefully;watercomesoutofthespecimenorificesurface(uppersurface)andthehydraulicpressuredecreasessharply.Duringthesubsequentfracturingofmultipleinjections,theratioofwaterfiltrationdecreasesrelativelybecauseofhighflow.Sothehydraulicpressurereachesamaximumof1.6775MPa,whichisgreaterthanthemaximumpressureobtainedbymanualcontrol.Thus,whenthefiltrationrateofthecoalandrockseamislarge,ahighflowofwaterinjectionfracturingshouldbeusedtoensurehigherwaterpressureonthecracktiptocausethehydraulicfracturetopropagate.Duringthewholeprocessofhydraulicfracturing,sevenmicroquakeeventsweremonitored;atypicalexampleisshowninFig.4.Incomparisontoblastingquakes,microquakesinducedbyhydraulicfracturepropagationaremuchweaker.Underlaboratoryconditions,becausethelayoutspaceoftheprobesissmall(2morless),thedifferenceintimeatwhicheachprobereceivesthemicroquakeeventsisverysmall,leadingtodifficultyinlocatingmicroquakeevents.Justasmicroquakesinducedbyhydraulicfracturinginalaboratoryspecimencanbemonitored,large-scalemicroquakesinducedbyhydraulicfracturinginthefieldalsocanbemonitored.Andbecausetheon-sitemonitoringregionislarge,themicro-quakesource(hydraulicfracturingpoint)canbelocatedatthesametime.Therefore,microquakeeventsinducedbyhydraulicfracturingcanbemonitoredbyamicroseismographduringhydraulicfracturinginthefield,leadingtoreal-timemonitoringandresearchonhydraulicfracturing.4.2.CrackpropagationshapeofhydraulicfracturingafterwaterpressureblastingThecrackshapeontheportholesurfaceofthetestblockafterhydraulicfracturingisshowninFig.5.Alongthedirectionofmaximumprincipalstress,sand-scouringoccursandtwowateroutletsaredistributedonbothsidesofthedrillhole.Thenormaldistancestothecenterlineofmaximumprincipalstressinthetestblockare75and85mm,respectively;thewidthofthecrackbandinducedbyhydraulicfracturingafterwaterpressureblastingreaches160mm.Atotalof13visiblecracksalongthedirectionofmaximumprincipalstressexistinthebandofhydraulicfracturing.Thence,hydraulicfracturingafterwaterpressureblastingcanformmorehydrauliccrackstheoreticallyandexpandthecrackbandalongthemainhydraulicfracturesurfaceunderthecombinedeffectsoftheblastingshockwaveandhydraulicpressure.Structuralplanessuchasjoints,fractures,andfaultsincoalandrockmasscanrefractandreflectacousticwaves.Asthedevelopmentdegreeofthevariousstructuralplanesincoalandrockmassintensifies,thesoundspeedincoalandrockmassalsodecreasessignificantly.Thesquareratiooftheaveragespeedofsoundinrock(Vp-rock)andaveragespeedofsoundincoalandrockmass(Vp-mass)istheintegritycoefficient().Thus,Isappliedtoindicatetheintegrityofcoalandrockmass.Beforetheexperimentofhydraulicfracturing,thesoundspeedoftheintegratedtestblockwasmeasured.Thenthesamespeedtestisconductedafterfracturing.Measuringpoints2cmapartarelaidoutonbothsidesparalleltothehydrauliccracksurfaceandatotalof625measuringpointsareobtained.Becausethecornersoftestblockgetdamaged,only504measuringpointsareactuallyavailable.Thedistancebetweencorrespondingmeasuringpointsonthetwosidesis50cm,soatotalof504datapointsareobtained.Thesoundpropagationspeedofeachpointisacquiredbymeasurement.Usingtheupperrightcornerofthetestblockasthecoordinateorigin,theverticaldownwarddirectionasthepositiveX-axis,thehorizontaldirectionasthepositiveY-axis,andtheintegrityrateofthetestblockastheZ-axisgivestheintegritydistributionofcoalandrockmassalongthemainfracturingsurfaceinducedbyhydraulicpressureshowninFig.6.Inthefigure,thefailuretrendofthetestblockfromtheupperrightcornertothelowerrightcornerisrelativelyintegrated.Intermediatecoalaffectedbytheblastingmakescrackspropagateanddevelopfurther,leadingtothemostseriousfailureatthecenter.Becauseofthewaterinjectiondrillhole,thewaterpressuregeneratesweakplanesintheupperpartofthetextblockandthusitbreaksmoreeasilyincomparisontothelower.Thetestblocknaturallysplitsalongthemainrupturesurfaceinducedbyhydraulicpressureunderthelightershock,andthecrackpropagationshapeofhydraulicfracturingafterwaterpressureblastingisshowninFig.7.Underthefracturingeffectofsevenwaterinjections,thehydraulicfracturepropagatesfully.Cracksappearonbothsides,whichonthebottomandtopofthetestblockextendto1–2cmawayfromthesurface.Themainrupturesurfaceinducedbythehydraulicpressureisovalinshapeandsplitstheentiretestblock(Fig.7b).Theweakeningeffectsonthestructuresaroundthedrillholeinducedbyblastingarebasicallyconsistent;inotherwords,blastingcrackspropagatealongtheradialdirectionallaroundandtheirlengthsareabout12.8cm,butthemaincracksinducedbythehydraulicpressureextendalongthedirectionperpendiculartotheminimumprincipalstressmainlyunderthecontrolofthestressfield.Belowthebottomofthedrillhole,thehydraulicfracturepropagatesalongtheblastingcracks,leadingtoformationoftwofailuresurfacesinducedbyhydraulicfracturing.However,asthecracksextend,thedistancebetweenthet
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 通訊設備修理專業考核試卷
- 茶葉種植的技術推廣與培訓考核試卷
- 草原割草與草原生態保護資金管理考核試卷
- 計算機硬件行業供應鏈金融服務與風險管理考核試卷
- 了解嵌入式技術的標準化進程試題及答案
- 關鍵能力提升信息系統監理師試題及答案
- 信息系統監理師考試考法演變試題及答案
- 軟件測試的設計模式與實現思路試題及答案
- 國企車輛采購管理制度
- 華為公司激勵管理制度
- 第18課《井岡翠竹》課件-2024-2025學年統編版語文七年級下冊
- 2025年河南省安陽市滑縣中考模擬(創新人才選拔測評(一))化學試題(含答案)
- 水利洞內清淤方案范本
- 升壓站電氣施工方案
- 吸氧并發癥預防及處理
- 辦公家具采購項目投標方案投標文件(技術方案)
- 警企共建合作協議書范本
- 硫化鉀測試報告范文
- 2025信息技術綠色發展行動計劃
- CNAS-CL31-2011 內部校準要求
- 2024年7月國家開放大學??啤陡叩葦祵W基礎》期末紙質考試試題及答案
評論
0/150
提交評論