陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷含解析_第1頁
陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷含解析_第2頁
陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷含解析_第3頁
陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷含解析_第4頁
陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安工業大學附屬補習學校2025屆高三(下)第三次月考數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則函數的圖象大致為()A. B.C. D.2.中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”意思為有一個人要走378里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了六天恰好到達目的地,請問第二天比第四天多走了()A.96里 B.72里 C.48里 D.24里3.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.4.某大學計算機學院的薛教授在2019年人工智能方向招收了6名研究生.薛教授欲從人工智能領域的語音識別、人臉識別,數據分析、機器學習、服務器開發五個方向展開研究,且每個方向均有研究生學習,其中劉澤同學學習人臉識別,則這6名研究生不同的分配方向共有()A.480種 B.360種 C.240種 D.120種5.函數在上單調遞減,且是偶函數,若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)6.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.7.已知復數z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知雙曲線()的漸近線方程為,則()A. B. C. D.9.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.10.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.11.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數為;當無放回依次取出兩個小球時,記取出的紅球數為,則()A., B.,C., D.,12.設集合,,則().A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將函數的圖像向右平移個單位,得到函數的圖像,則函數在區間上的值域為__________.14.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.15.已知均為非負實數,且,則的取值范圍為______.16.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數是80,則成績在區間的學生人數是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.18.(12分)已知傾斜角為的直線經過拋物線的焦點,與拋物線相交于、兩點,且.(1)求拋物線的方程;(2)設為拋物線上任意一點(異于頂點),過做傾斜角互補的兩條直線、,交拋物線于另兩點、,記拋物線在點的切線的傾斜角為,直線的傾斜角為,求證:與互補.19.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數方程;(2)若直線與曲線相交于,兩點,且,求實數的值.20.(12分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數方程是(為參數,常數),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.21.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規則如下:抽獎者擲各面標有點數的正方體骰子次,若擲得點數大于,則可繼續在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數學期望不超過元,求的最小值.22.(10分)在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A本題考查了函數圖像的性質,屬于中檔題.2.B【解析】

人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,計算,代入得到答案.【詳解】由題意可知此人每天走的路程構成公比為的等比數列,設此人第一天走的路程為,則,解得,從而可得,故.故選:.本題考查了等比數列的應用,意在考查學生的計算能力和應用能力.3.D【解析】

求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.本題考查了橢圓離心率,動點軌跡,屬于中檔題.4.B【解析】

將人臉識別方向的人數分成:有人、有人兩種情況進行分類討論,結合捆綁計算出不同的分配方法數.【詳解】當人臉識別方向有2人時,有種,當人臉識別方向有1人時,有種,∴共有360種.故選:B本小題主要考查簡單排列組合問題,考查分類討論的數學思想方法,屬于基礎題.5.B【解析】

根據題意分析的圖像關于直線對稱,即可得到的單調區間,利用對稱性以及單調性即可得到的取值范圍。【詳解】根據題意,函數滿足是偶函數,則函數的圖像關于直線對稱,若函數在上單調遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.本題考查偶函數的性質,以及函數單調性的應用,有一定綜合性,屬于中檔題。6.A【解析】

作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.7.C【解析】分析:根據復數的運算,求得復數z,再利用復數的表示,即可得到復數對應的點,得到答案.詳解:由題意,復數z=2i1-i所以復數z在復平面內對應的點的坐標為(-1,-1),位于復平面內的第三象限,故選C.點睛:本題主要考查了復數的四則運算及復數的表示,其中根據復數的四則運算求解復數z是解答的關鍵,著重考查了推理與運算能力.8.A【解析】

根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.9.A【解析】

求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.10.D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D本題考查已知復數的類型求參數范圍,考查復數的除法運算.11.B【解析】

分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區別.12.D【解析】

根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D此題考查集合的交并集運算,屬于簡單題目,二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據圖像的平移變換得到函數的解析式,再利用整體思想求函數的值域.【詳解】函數的圖像向右平移個單位得,,,.故答案為:.本題考查三角函數圖像的平移變換、值域的求解,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意整體思想的運用.14.【解析】

求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.15.【解析】

設,可得的取值范圍,分別利用基本不等式和,把用代換,結合的取值范圍求關于的二次函數的最值即可求解.【詳解】因為,,令,則,因為,當且僅當時等號成立,所以,,即,令則函數的對稱軸為,所以當時函數有最大值為,即.當且,即,或,時取等號;因為,當且僅當時等號成立,所以,令,則函數的對稱軸為,所以當時,函數有最小值為,即,當,且時取等號,所以.故答案為:本題考查基本不等式與二次函數求最值相結合求代數式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關鍵;屬于綜合型、難度大型試題.16.30【解析】

根據頻率直方圖中數據先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區間的學生人數是.故答案為:30本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數據處理,數形運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】

(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.18.(1)(2)證明見解析【解析】

(1)根據題意,設直線方程為,聯立方程,根據拋物線的定義即可得到結論;(2)根據題意,設的方程為,聯立方程得,同理可得,進而得到,再利用點差法得直線的斜率,利用切線與導數的關系得直線的斜率,進而可得與互補.【詳解】(1)由題意設直線的方程為,令、,聯立,得,根據拋物線的定義得,又,故所求拋物線方程為.(2)依題意,設,,設的方程為,與聯立消去得,,同理,直線的斜率=切線的斜率,由,即與互補.本題考查直線與拋物線的位置關系的綜合應用,直線斜率的應用,考查分析問題解決問題的能力,屬于中檔題.19.(Ⅰ)(t為參數);(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標方程、參數方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數方程;第二問,直線方程與曲線方程聯立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標方程,參數方程與直角方程的相互轉化;2.直線與拋物線的位置關系.20.(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】

(1)消去參數的直角坐標方程,利用,即得的直角坐標方程;(2)由直線與拋物線相切,求導可得切線斜率,再由直線與圓相切,故切線與圓心與切點連線垂直,可求解得到切點坐標,即得解.【詳解】(1)消去參數的直角坐標方程為:.的極坐標方程.∵,.當時表示以為圓心為半徑的圓;為拋物線.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論