




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南長沙市一中學集團達標名校2024年中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某大學生利用課余時間在網上銷售一種成本為50元/件的商品,每月的銷售量y(件)與銷售單價x(元/件)之間的函數關系式為y=–4x+440,要獲得最大利潤,該商品的售價應定為A.60元B.70元C.80元D.90元2.如圖,數軸上的三點所表示的數分別為,其中,如果|那么該數軸的原點的位置應該在()A.點的左邊 B.點與點之間 C.點與點之間 D.點的右邊3.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.4.小明在學習了正方形之后,給同桌小文出了道題,從下列四個條件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中選兩個作為補充條件,使?ABCD為正方形(如圖),現有下列四種選法,你認為其中錯誤的是()A.①② B.②③ C.①③ D.②④5.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.26.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調查C.若甲組數據的標準差S甲=0.31,乙組數據的標準差S乙=0.25,則乙組數據比甲組數據穩定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件7.將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-28.“趕陀螺”是一項深受人們喜愛的運動.如圖所示是一個陀螺的立體結構圖.已知底面圓的直徑AB=8cm,圓柱的高BC=6cm,圓錐的高CD=3cm,則這個陀螺的表面積是()A.68πcm2 B.74πcm2 C.84πcm2 D.100πcm29.工信部發布《中國數字經濟發展與就業白皮書(2018)》)顯示,2017年湖北數字經濟總量1.21萬億元,列全國第七位、中部第一位.“1.21萬”用科學記數法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×10510.如圖,在⊙O中,O為圓心,點A,B,C在圓上,若OA=AB,則∠ACB=()A.15° B.30° C.45° D.60°二、填空題(本大題共6個小題,每小題3分,共18分)11.關于x的不等式組的整數解共有3個,則a的取值范圍是_____.12.當x________時,分式有意義.13.函數中,自變量的取值范圍是______14.不等式-2x+3>0的解集是___________________15.如圖,在矩形ABCD中,E是AD上一點,把△ABE沿直線BE翻折,點A正好落在BC邊上的點F處,如果四邊形CDEF和矩形ABCD相似,那么四邊形CDEF和矩形ABCD面積比是__.16.計算:(+)=_____.三、解答題(共8題,共72分)17.(8分)某養雞場有2500只雞準備對外出售.從中隨機抽取了一部分雞,根據它們的質量(單位:),繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(Ⅰ)圖①中的值為;(Ⅱ)求統計的這組數據的平均數、眾數和中位數;(Ⅲ)根據樣本數據,估計這2500只雞中,質量為的約有多少只?18.(8分)旋轉變換是解決數學問題中一種重要的思想方法,通過旋轉變換可以將分散的條件集中到一起,從而方便解決問題.已知,△ABC中,AB=AC,∠BAC=α,點D、E在邊BC上,且∠DAE=α.(1)如圖1,當α=60°時,將△AEC繞點A順時針旋轉60°到△AFB的位置,連接DF,①求∠DAF的度數;②求證:△ADE≌△ADF;(2)如圖2,當α=90°時,猜想BD、DE、CE的數量關系,并說明理由;(3)如圖3,當α=120°,BD=4,CE=5時,請直接寫出DE的長為.19.(8分)(1)觀察猜想如圖①點B、A、C在同一條直線上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,則BC、BD、CE之間的數量關系為______;(2)問題解決如圖②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC為直角邊向外作等腰Rt△DAC,連結BD,求BD的長;(3)拓展延伸如圖③,在四邊形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,請直接寫出BD的長.20.(8分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據題中提供的相關信息,求出“石鼓閣”的高AB的長度.21.(8分)在正方形ABCD中,動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數量關系和位置關系,并說明理由;(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.22.(10分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4)(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1;(2)請畫出△ABC關于原點O成中心對稱的圖形△A2B2C2;(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.23.(12分)請你僅用無刻度的直尺在下面的圖中作出△ABC的邊AB上的高CD.如圖①,以等邊三角形ABC的邊AB為直徑的圓,與另兩邊BC、AC分別交于點E、F.如圖②,以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.24.解方程:=1.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】設銷售該商品每月所獲總利潤為w,則w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴當x=80時,w取得最大值,最大值為3600,即售價為80元/件時,銷售該商品所獲利潤最大,故選C.2、C【解析】
根據絕對值是數軸上表示數的點到原點的距離,分別判斷出點A、B、C到原點的距離的大小,從而得到原點的位置,即可得解.【詳解】∵|a|>|c|>|b|,
∴點A到原點的距離最大,點C其次,點B最小,
又∵AB=BC,
∴原點O的位置是在點B、C之間且靠近點B的地方.
故選:C.【點睛】此題考查了實數與數軸,理解絕對值的定義是解題的關鍵.3、B【解析】
延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.4、B【解析】
A、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當②∠ABC=90°時,菱形ABCD是正方形,故此選項正確,不合題意;B、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當AC=BD時,這是矩形的性質,無法得出四邊形ABCD是正方形,故此選項錯誤,符合題意;C、∵四邊形ABCD是平行四邊形,當①AB=BC時,平行四邊形ABCD是菱形,當③AC=BD時,菱形ABCD是正方形,故此選項正確,不合題意;D、∵四邊形ABCD是平行四邊形,∴當②∠ABC=90°時,平行四邊形ABCD是矩形,當④AC⊥BD時,矩形ABCD是正方形,故此選項正確,不合題意.故選C.5、C【解析】
直接利用有理數的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.
故選:C.【點睛】此題主要考查了有理數的除法運算,正確掌握運算法則是解題關鍵.6、A【解析】試題分析:根據抽樣調查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調查,故正確;C、標準差反映了一組數據的波動情況,標準差越小,數據越穩定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調查與抽樣調查;3.標準差;4.隨機事件.7、A【解析】試題分析:根據函數圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數表達式是y=(x﹣1)2+2,故選A.考點:二次函數圖象與幾何變換.8、C【解析】試題分析:∵底面圓的直徑為8cm,高為3cm,∴母線長為5cm,∴其表面積=π×4×5+42π+8π×6=84πcm2,故選C.考點:圓錐的計算;幾何體的表面積.9、C【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.詳解:1.21萬=1.21×104,故選:C.點睛:此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.10、B【解析】
根據題意得到△AOB是等邊三角形,求出∠AOB的度數,根據圓周角定理計算即可.【詳解】解:∵OA=AB,OA=OB,∴△AOB是等邊三角形,∴∠AOB=60°,∴∠ACB=30°,故選B.【點睛】本題考查的是圓周角定理和等邊三角形的判定,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
首先確定不等式組的解集,先利用含a的式子表示,根據整數解的個數就可以確定有哪些整數解,根據解的情況可以得到關于a的不等式,從而求出a的范圍.【詳解】解:由不等式①得:x>a,由不等式②得:x<1,所以不等式組的解集是a<x<1.∵關于x的不等式組的整數解共有3個,∴3個整數解為0,﹣1,﹣2,∴a的取值范圍是﹣3≤a<﹣2.故答案為:﹣3≤a<﹣2.【點睛】本題考查了不等式組的解法及整數解的確定.求不等式組的解集,應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.12、x≠3【解析】由題意得x-3≠0,∴x≠3.13、x≠1【解析】
解:∵有意義,∴x-1≠0,∴x≠1;故答案是:x≠1.14、x<【解析】
根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-3,系數化為1,得:x<,故答案為x<.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.15、【解析】由題意易得四邊形ABFE是正方形,設AB=1,CF=x,則有BC=x+1,CD=1,∵四邊形CDEF和矩形ABCD相似,∴CD:BC=FC:CD,即1:(x+1)=x:1,∴x=或x=(舍去),∴=,故答案為.【點睛】本題考查了折疊的性質,相似多邊形的性質等,熟練掌握相似多邊形的面積比等于相似比的平方是解題的關鍵.16、1.【解析】
去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.三、解答題(共8題,共72分)17、(Ⅰ)28.(Ⅱ)平均數是1.52.眾數為1.8.中位數為1.5.(Ⅲ)200只.【解析】分析:(Ⅰ)用整體1減去所有已知的百分比即可求出m的值;(Ⅱ)根據眾數、中位數、加權平均數的定義計算即可;(Ⅲ)用總數乘以樣本中2.0kg的雞所占的比例即可得解.解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)觀察條形統計圖,∵,∴這組數據的平均數是1.52.∵在這組數據中,1.8出現了16次,出現的次數最多,∴這組數據的眾數為1.8.∵將這組數據按從小到大的順序排列,其中處于中間的兩個數都是1.5,有,∴這組數據的中位數為1.5.(Ⅲ)∵在所抽取的樣本中,質量為的數量占.∴由樣本數據,估計這2500只雞中,質量為的數量約占.有.∴這2500只雞中,質量為的約有200只.點睛:此題主要考查了平均數、眾數、中位數的統計意義以及利用樣本估計總體等知識.找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個;平均數是指在一組數據中所有數據之和再除以數據的個數.18、(1)①30°②見解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋轉的性質得出∠FAB=∠CAE,再用角的和即可得出結論;②利用SAS判斷出△ADE≌△ADF,即可得出結論;(2)先判斷出BF=CE,∠ABF=∠ACB,再判斷出∠DBF=90°,即可得出結論;(3)同(2)的方法判斷出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出結論.【詳解】解:(1)①由旋轉得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋轉知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如圖2,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根據勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如圖3,將△AEC繞點A順時針旋轉90°到△AFB的位置,連接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,過點F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根據勾股定理得,,∴DE=DF=,故答案為.【點睛】此題是幾何變換綜合題,主要考查了旋轉的性質,全等三角形的判定和性質,勾股定理,構造全等三角形和直角三角形是解本題的關鍵.19、(1)BC=BD+CE,(2);(3).【解析】
(1)證明△ADB≌△EAC,根據全等三角形的性質得到BD=AC,EC=AB,即可得到BC、BD、CE之間的數量關系;(2)過D作DE⊥AB,交BA的延長線于E,證明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根據勾股定理即可得到BD的長;(3)過D作DE⊥BC于E,作DF⊥AB于F,證明△CED≌△AFD,根據全等三角形的性質得到CE=AF,ED=DF,設AF=x,DF=y,根據CB=4,AB=2,列出方程組,求出的值,根據勾股定理即可求出BD的長.【詳解】解:(1)觀察猜想結論:BC=BD+CE,理由是:如圖①,∵∠B=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,∵∠B=∠C=90°,AD=AE,∴△ADB≌△EAC,∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE;(2)問題解決如圖②,過D作DE⊥AB,交BA的延長線于E,由(1)同理得:△ABC≌△DEA,∴DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,由勾股定理得:(3)拓展延伸如圖③,過D作DE⊥BC于E,作DF⊥AB于F,同理得:△CED≌△AFD,∴CE=AF,ED=DF,設AF=x,DF=y,則,解得:∴BF=2+1=3,DF=3,由勾股定理得:【點睛】考查全等三角形的判定與性質,勾股定理,二元一次方程組的應用,熟練掌握全等三角形的判定與性質是解題的關鍵.20、“石鼓閣”的高AB的長度為56m.【解析】
根據題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據相似三角形的性質可得=,再根據∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數值計算即可得出結論.【詳解】由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,聯立①②,解得:AB=56,答:“石鼓閣”的高AB的長度為56m.【點睛】本題考查了相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.21、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據正方形的性質,由SAS先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE=a,根據正方形的性質知∠ADC=90°,然后根據等腰三角形的性質得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結論還成立,有兩種情況:①如圖1,當AC=CE時,設正方形ABCD的邊長為a,由勾股定理得,,則;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年福建事業單位考試新變化試題及答案
- 園藝師考試各類題目及答案
- 大學輔導員團隊合作能力考核試題及答案
- 園藝師有機肥施用標準試題及答案
- 2024年園藝師考試特點試題及答案
- 園藝師專業技能評估試題及答案
- 2024年福建事業單位考試的綜合能力強化與案例應用試題及答案
- 2024年花藝師考試個人成長與學術提升試題及答案
- 2024年中國管路補償裝備行業發展現狀、運行格局及投資前景分析報告(智研咨詢)
- 農業職業經理人考試指導原則試題及答案
- 2024年10月高等教育自學考試02382管理信息系統試題及答案
- 消防預埋合同模板
- 2025年高考政治一輪復習知識清單選擇性必修三 《邏輯與思維》重難點知識
- 國開2024年秋中國建筑史(本)終考任務答案
- 新生兒敗血癥(共22張課件)
- 頌缽療愈師培訓
- DB5116T23-2024建設工程項目海綿城市專項設計規程
- 律師事務所律師事務所風險管理手冊
- 2023中華護理學會團體標準-注射相關感染預防與控制
- 幼兒園小班班本課程果然有趣
- 子宮肌瘤課件教學課件
評論
0/150
提交評論