




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆四川省宜賓市敘州區二中高三數學試題期初模擬卷(1)注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則()A. B.C. D.2.已知直線與直線則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知復數z=(1+2i)(1+ai)(a∈R),若z∈R,則實數a=()A. B. C.2 D.﹣24.已知雙曲線的一個焦點與拋物線的焦點重合,則雙曲線的離心率為()A. B. C.3 D.45.()A. B. C. D.6.已知,則()A. B. C. D.7.在我國傳統文化“五行”中,有“金、木、水、火、土”五個物質類別,在五者之間,有一種“相生”的關系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關系的概率是()A.0.2 B.0.5 C.0.4 D.0.88.設,,,則、、的大小關系為()A. B. C. D.9.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.10.已知函數,其中,若恒成立,則函數的單調遞增區間為()A. B.C. D.11.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數12.已知函數(其中為自然對數的底數)有兩個零點,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,項的系數是__________(用數字作答).14.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.15.定義在上的偶函數滿足,且,當時,.已知方程在區間上所有的實數根之和為.將函數的圖象向右平移個單位長度,得到函數的圖象,則__________,__________.16.某地區教育主管部門為了對該地區模擬考試成績進行分析,隨機抽取了150分到450分之間的1000名學生的成績,并根據這1000名學生的成績畫出樣本的頻率分布直方圖(如圖),則成績在[250,400)內的學生共有____人.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數是自然對數的底數.(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點P在底面上的射影為的中點G,點E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.19.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.20.(12分)在平面直角坐標系中,設,過點的直線與圓相切,且與拋物線相交于兩點.(1)當在區間上變動時,求中點的軌跡;(2)設拋物線焦點為,求的周長(用表示),并寫出時該周長的具體取值.21.(12分)已知函數(I)當時,解不等式.(II)若不等式恒成立,求實數的取值范圍22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.本題考查了集合的交集運算.集合進行交并補運算時,常借助數軸求解.注意端點處是實心圓還是空心圓.2.B【解析】
利用充分必要條件的定義可判斷兩個條件之間的關系.【詳解】若,則,故或,當時,直線,直線,此時兩條直線平行;當時,直線,直線,此時兩條直線平行.所以當時,推不出,故“”是“”的不充分條件,當時,可以推出,故“”是“”的必要條件,故選:B.本題考查兩條直線的位置關系以及必要不充分條件的判斷,前者應根據系數關系來考慮,后者依據兩個條件之間的推出關系,本題屬于中檔題.3.D【解析】
化簡z=(1+2i)(1+ai)=,再根據z∈R求解.【詳解】因為z=(1+2i)(1+ai)=,又因為z∈R,所以,解得a=-2.故選:D本題主要考查復數的運算及概念,還考查了運算求解的能力,屬于基礎題.4.A【解析】
根據題意,由拋物線的方程可得其焦點坐標,由此可得雙曲線的焦點坐標,由雙曲線的幾何性質可得,解可得,由離心率公式計算可得答案.【詳解】根據題意,拋物線的焦點為,則雙曲線的焦點也為,即,則有,解可得,雙曲線的離心率.故選:A.本題主要考查雙曲線、拋物線的標準方程,關鍵是求出拋物線焦點的坐標,意在考查學生對這些知識的理解掌握水平.5.B【解析】
利用復數代數形式的乘除運算化簡得答案.【詳解】.故選B.本題考查復數代數形式的乘除運算,考查了復數的基本概念,是基礎題.6.B【解析】
利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.7.B【解析】
利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B本小題主要考查古典概型的計算,屬于基礎題.8.D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.9.D【解析】
畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.10.A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.本題考查求正弦型函數的單調區間,涉及到恒成立問題,考查學生轉化與化歸的思想,是一道中檔題.11.C【解析】
根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.12.B【解析】
求出導函數,確定函數的單調性,確定函數的最值,根據零點存在定理可確定參數范圍.【詳解】,當時,,單調遞增,當時,,單調遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數有兩個零點,則,∴.故選:B.本題考查函數的零點,考查用導數研究函數的最值,根據零點存在定理確定參數范圍.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.14.【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:本題考查圓錐的體積、球的體積的計算,考查學生空間想象能力與計算能力,是一道中檔題.15.24【解析】
根據函數為偶函數且,所以的周期為,的實數根是函數和函數的圖象的交點的橫坐標,在平面直角坐標系中畫出函數圖象,根據函數的對稱性可得所有實數根的和為,從而可得參數的值,最后求出函數的解析式,代入求值即可.【詳解】解:因為為偶函數且,所以的周期為.因為時,,所以可作出在區間上的圖象,而方程的實數根是函數和函數的圖象的交點的橫坐標,結合函數和函數在區間上的簡圖,可知兩個函數的圖象在區間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標之和為,所以,故.因為,所以.故.故答案為:;本題考查函數的奇偶性、周期性、對稱性的應用,函數方程思想,數形結合思想,屬于難題.16.750【解析】因為0.001+0.001+0.004+a+0.005+0.003×50=1,得a=0.006所以1000×0.004+0.006+0.005三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)減區間是,增區間是;(2),證明見解析.【解析】
(1)當時,求得函數的導函數以及二階導函數,由此求得的單調區間.(2)令求得,構造函數,利用導數求得的單調區間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以本小題主要考查利用導數研究函數的單調區間,考查利用導數研究函數的極值點,考查利用導數證明不等式,考查化歸與轉化的數學思想方法,屬于難題.18.(1)證明見解析(2)【解析】
(1)由等腰梯形的性質可證得,由射影可得平面,進而求證;(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,分別求得平面與平面的法向量,再利用數量積求解即可.【詳解】(1)在等腰梯形中,點E在線段上,且,點E為上靠近C點的四等分點,,,,,點P在底面上的射影為的中點G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點F,連接,以G為原點,所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設平面的法向量為,則,即,令,則,,,設平面的法向量為,則,即,令,則,,,設平面與平面的夾角為θ,則二面角的余弦值為.本題考查線面垂直的證明,考查空間向量法求二面角,考查運算能力與空間想象能力.19.(Ⅰ),(Ⅱ)見解析【解析】
(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.20.(1).(2)的周長為,時,的周長為【解析】
(1)設的方程為,根據題意由點到直線的距離公式可得,將直線方程與拋物線方程聯立可得,設?坐標分別是?,利用韋達定理以及中點坐標公式消參即可求解.(2)根據拋物線的定義可得,由(1)可得,再利用弦長公式即可求解.【詳解】(1)設的方程為于是聯立設?坐標分別是?則設的中點坐標為,則消去參數得:(2)設,,由拋物線定義知,,∴由(1)知∴,,的周長為時,的周長為本題考查了動點的軌跡方程、直線與拋物線的位置關系、拋物線的定義、弦長公式,考查了計算能力,屬于中檔題.21.(Ⅰ);(Ⅱ).【解析】試題分析:(1)根據零點分區間法,去掉絕對值解不等式;(2)根據絕對值不等式的性質得,因此將問題轉化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質得:,要使不等式恒成立,則當時,不等式恒成立;當時,解不等式得.綜上.所以實數的取值范圍為.22
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能食品營養秤項目申請報告模范
- 2025年HB步進電機項目提案報告
- 2025年純水冷卻設備項目規劃申請報告模板
- 2025企業員工安全培訓考試試題往年題考
- 2024-2025公司項目部安全培訓考試試題及參考答案(考試直接用)
- 2025年工廠安全培訓考試試題帶答案(典型題)
- 2025年新入職員工安全培訓考試試題及答案【全優】
- 2025車間安全培訓考試試題及答案標準卷
- 2025年消防防火閥項目經營分析報告
- 山東省濱州市鄒平雙語學校2025屆八下數學期末聯考模擬試題含解析
- 當代社會政策分析 課件 第一章 導論
- 暑期酒店營銷方案及策略
- 九江三支一扶真題2023
- 2024年《社會工作綜合能力(初級)》考前沖刺備考速記速練300題(含答案)
- 手術室誤吸應急預案
- (新平臺)國家開放大學《藥物化學》形考任務1-3參考答案
- 物品領用申請表
- 第15課十月革命與蘇聯社會主義建設【中職專用】《世界歷史》(高教版2023基礎模塊)
- 2024屆江蘇省南京市十三中市級名校中考聯考化學試題含解析
- 配電自動化終端DTU巡視
- 活動安保方案及應急預案
評論
0/150
提交評論