




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰市長涇第二中學2024年中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若⊙O的半徑為5cm,OA=4cm,則點A與⊙O的位置關系是()A.點A在⊙O內 B.點A在⊙O上 C.點A在⊙O外 D.內含2.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數量比第一個月多440輛.設該公司第二、三兩個月投放單車數量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4403.如圖,P為⊙O外一點,PA、PB分別切⊙O于點A、B,CD切⊙O于點E,分別交PA、PB于點C、D,若PA=6,則△PCD的周長為()A.8 B.6 C.12 D.104.已知二次函數(為常數),當自變量的值滿足時,與其對應的函數值的最大值為-1,則的值為()A.3或6 B.1或6 C.1或3 D.4或65.關于反比例函數,下列說法正確的是()A.函數圖像經過點(2,2); B.函數圖像位于第一、三象限;C.當時,函數值隨著的增大而增大; D.當時,.6.實數4的倒數是()A.4 B. C.﹣4 D.﹣7.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a58.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內角平分線 B.三邊垂直平分線C.三條中線 D.三條高9.根據如圖所示的程序計算函數y的值,若輸入的x值是4或7時,輸出的y值相等,則b等于()A.9 B.7 C.﹣9 D.﹣710.下列圖形都是由同樣大小的菱形按照一定規律所組成的,其中第①個圖形中一共有3個菱形,第②個圖形中一共有7個菱形,第③個圖形中一共有13個菱形,…,按此規律排列下去,第⑨個圖形中菱形的個數為()A.73 B.81 C.91 D.10911.已知A(x1,y1),B(x2,y2)是反比例函數y=kx(k≠0)圖象上的兩個點,當x1<x2<0時,y1>y2A.第一象限B.第二象限C.第三象限D.第四象限12.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,P,Q分別為AB,AC的中點.若S△APQ=1,則S四邊形PBCQ=__.14.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_____.15.如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點B順時針旋轉60°,得到△BDE,連接DC交AB于點F,則△ACF與△BDF的周長之和為_______cm.16.________.17.若正n邊形的內角為,則邊數n為_____________.18.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.20.(6分)某紡織廠生產的產品,原來每件出廠價為80元,成本為60元.由于在生產過程中平均每生產一件產品有0.5的污水排出,現在為了保護環境,需對污水凈化處理后再排出.已知每處理1污水的費用為2元,且每月排污設備損耗為8000元.設現在該廠每月生產產品x件,每月純利潤y元:(1)求出y與x的函數關系式.(純利潤=總收入-總支出)(2)當y=106000時,求該廠在這個月中生產產品的件數.21.(6分)解不等式組,并將解集在數軸上表示出來.22.(8分)如圖,ABC中,∠ACB=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線交CB的延長線于點E,交AC于點F.(1)求證:點F是AC的中點;(2)若∠A=30°,AF=,求圖中陰影部分的面積.23.(8分)當x取哪些整數值時,不等式與4﹣7x<﹣3都成立?24.(10分)如圖1,已知拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)兩點.(1)求拋物線的解析式;(2)將直線OB向下平移m個單位長度后,得到的直線與拋物線只有一個公共點D,求m的值及點D的坐標;(3)如圖2,若點N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,在坐標平面內有點P,求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).25.(10分)如圖,在每個小正方形的邊長為1的網格中,點A,B,M,N均在格點上,P為線段MN上的一個動點(1)MN的長等于_______,(2)當點P在線段MN上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的,(不要求證明)26.(12分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.求反比例函數的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.27.(12分)如圖,已知△ABC.(1)請用直尺和圓規作出∠A的平分線AD(不要求寫作法,但要保留作圖痕跡);(2)在(1)的條件下,若AB=AC,∠B=70°,求∠BAD的度數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
直接利用點與圓的位置關系進而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點A與⊙O的位置關系是:點A在⊙O內.故選A.【點睛】此題主要考查了點與圓的位置關系,正確①點P在圓外?d>r,②點P在圓上?d=r,③點P在圓內?d<r是解題關鍵.2、A【解析】
根據題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據題意找到等量關系進行列方程.3、C【解析】
由切線長定理可求得PA=PB,AC=CE,BD=ED,則可求得答案.【詳解】∵PA、PB分別切⊙O于點A、B,CD切⊙O于點E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周長為12,故選:C.【點睛】本題主要考查切線的性質,利用切線長定理求得PA=PB、AC=CE和BD=ED是解題的關鍵.4、B【解析】分析:分h<2、2≤h≤5和h>5三種情況考慮:當h<2時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論;當2≤h≤5時,由此時函數的最大值為0與題意不符,可得出該情況不存在;當h>5時,根據二次函數的性質可得出關于h的一元二次方程,解之即可得出結論.綜上即可得出結論.詳解:如圖,當h<2時,有-(2-h)2=-1,解得:h1=1,h2=3(舍去);當2≤h≤5時,y=-(x-h)2的最大值為0,不符合題意;當h>5時,有-(5-h)2=-1,解得:h3=4(舍去),h4=1.綜上所述:h的值為1或1.故選B.點睛:本題考查了二次函數的最值以及二次函數的性質,分h<2、2≤h≤5和h>5三種情況求出h值是解題的關鍵.5、C【解析】
直接利用反比例函數的性質分別分析得出答案.【詳解】A、關于反比例函數y=-,函數圖象經過點(2,-2),故此選項錯誤;B、關于反比例函數y=-,函數圖象位于第二、四象限,故此選項錯誤;C、關于反比例函數y=-,當x>0時,函數值y隨著x的增大而增大,故此選項正確;D、關于反比例函數y=-,當x>1時,y>-4,故此選項錯誤;故選C.【點睛】此題主要考查了反比例函數的性質,正確掌握相關函數的性質是解題關鍵.6、B【解析】
根據互為倒數的兩個數的乘積是1,求出實數4的倒數是多少即可.【詳解】解:實數4的倒數是:1÷4=.故選:B.【點睛】此題主要考查了一個數的倒數的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數的兩個數的乘積是1.7、B【解析】
根據冪的乘方,底數不變指數相乘;同底數冪相除,底數不變,指數相減;同底數冪相乘,底數不變指數相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.8、B【解析】試題分析:根據線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質,熟記性質是解題的關鍵.9、C【解析】
先求出x=7時y的值,再將x=4、y=-1代入y=2x+b可得答案.【詳解】∵當x=7時,y=6-7=-1,∴當x=4時,y=2×4+b=-1,解得:b=-9,故選C.【點睛】本題主要考查函數值,解題的關鍵是掌握函數值的計算方法.10、C【解析】試題解析:第①個圖形中一共有3個菱形,3=12+2;第②個圖形中共有7個菱形,7=22+3;第③個圖形中共有13個菱形,13=32+4;…,第n個圖形中菱形的個數為:n2+n+1;第⑨個圖形中菱形的個數92+9+1=1.故選C.考點:圖形的變化規律.11、B【解析】試題分析:當x1<x2<0時,y1>y2,可判定k>0,所以﹣k<0,即可判定一次函數y=kx﹣k的圖象經過第一、三、四象限,所以不經過第二象限,故答案選B.考點:反比例函數圖象上點的坐標特征;一次函數圖象與系數的關系.12、D【解析】
根據邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內切圓半徑==2,故選D.【點睛】本題考查了直角三角形內切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據三角形的中位線定理得到PQ=BC,得到相似比為,再根據相似三角形面積之比等于相似比的平方,可得到結果.【詳解】解:∵P,Q分別為AB,AC的中點,∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點睛】本題考查相似三角形的判定和性質,三角形中位線定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.14、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.15、1.【解析】試題分析:∵將△ABC繞點B順時針旋轉60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD為等邊三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB===13,△ACF與△BDF的周長之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案為1.考點:旋轉的性質.16、1【解析】
先將二次根式化為最簡,然后再進行二次根式的乘法運算即可.【詳解】解:原式=2×=1.故答案為1.【點睛】本題考查了二次根式的乘法運算,屬于基礎題,掌握運算法則是關鍵.17、9【解析】分析:根據正多邊形的性質:正多邊形的每個內角都相等,結合多邊形內角和定理列出方程進行解答即可.詳解:由題意可得:140n=180(n-2),解得:n=9.故答案為:9.點睛:本題解題的關鍵是要明白以下兩點:(1)正多邊形的每個內角相等;(2)n邊形的內角和=180(n-2).18、2【解析】
設MN=y,PC=x,根據正方形的性質和勾股定理列出y1關于x的二次函數關系式,求二次函數的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數的最值.熟練掌握勾股定理和二次函數的最值是解決問題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)(,1).【解析】
(1)根據勾股定理可得AB的長,即⊙M的直徑,根據同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構建切線AE,根據特殊的三角函數值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點A作AE⊥AB于E,交BD的延長線于點E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點E的坐標為(,1).【點睛】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質以及三角函數等知識.注意準確作出輔助線是解此題的關鍵.20、(1)y=19x-1(x>0且x是整數)(2)6000件【解析】
(1)本題的等量關系是:純利潤=產品的出廠單價×產品的數量-產品的成本價×產品的數量-生產過程中的污水處理費-排污設備的損耗,可根據此等量關系來列出總利潤與產品數量之間的函數關系式;(2)根據(1)中得出的式子,將y的值代入其中,求出x即可.【詳解】(1)依題意得:y=80x-60x-0.5x?2-1,化簡得:y=19x-1,∴所求的函數關系式為y=19x-1.(x>0且x是整數)(2)當y=106000時,代入得:106000=19x-1,解得x=6000,∴這個月該廠生產產品6000件.【點睛】本題是利用一次函數的有關知識解答實際應用題,可根據題意找出等量關系,列出函數式進行求解.21、原不等式組的解集為﹣4<x≤1,在數軸上表示見解析.【解析】分析:根據解一元一次不等式組的步驟,大小小大中間找,可得答案詳解:解不等式①,得x>﹣4,解不等式②,得x≤1,把不等式①②的解集在數軸上表示如圖,原不等式組的解集為﹣4<x≤1.點睛:本題考查了解一元一次不等式組,利用不等式組的解集的表示方法是解題關鍵.22、(1)見解析;(2)【解析】
(1)連接OD、CD,如圖,利用圓周角定理得到∠BDC=90°,再判定AC為⊙O的切線,則根據切線長定理得到FD=FC,然后證明∠3=∠A得到FD=FA,從而有FC=FA;(2)在Rt△ACB中利用含30度的直角三角形三邊的關系得到BC=AC=2,再證明△OBD為等邊三角形得到∠BOD=60°,接著根據切線的性質得到OD⊥EF,從而可計算出DE的長,然后根據扇形的面積公式,利用S陰影部分=S△ODE-S扇形BOD進行計算即可.【詳解】(1)證明:連接OD、CD,如圖,∵BC為直徑,∴∠BDC=90°,∵∠ACB=90°,∴AC為⊙O的切線,∵EF為⊙O的切線,∴FD=FC,∴∠1=∠2,∵∠1+∠A=90°,∠2+∠3=90°,∴∠3=∠A,∴FD=FA,∴FC=FA,∴點F是AC中點;(2)解:在Rt△ACB中,AC=2AF=2,而∠A=30°,∴∠CBA=60°,BC=AC=2,∵OB=OD,∴△OBD為等邊三角形,∴∠BOD=60°,∵EF為切線,∴OD⊥EF,在Rt△ODE中,DE=OD=,∴S陰影部分=S△ODE﹣S扇形BOD=×1×﹣=﹣π.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.若出現圓的切線,必連過切點的半徑,構造定理圖,得出垂直關系.簡記作:見切點,連半徑,見垂直.也考查了圓周角定理和扇形的面積公式.23、2,1【解析】
根據題意得出不等式組,解不等式組求得其解集即可.【詳解】根據題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數值是2,1.【點睛】本題考查了解不等式組的能力,根據題意得出不等式組是解題的關鍵.24、(1)拋物線的解析式是y=x2﹣3x;(2)D點的坐標為(4,﹣4);(3)點P的坐標是()或().【解析】試題分析:(1)利用待定系數法求二次函數解析式進而得出答案即可;
(2)首先求出直線OB的解析式為y=x,進而將二次函數以一次函數聯立求出交點即可;
(3)首先求出直線A′B的解析式,進而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,進而求出點P1的坐標,再利用翻折變換的性質得出另一點的坐標.試題解析:(1)∵拋物線y=ax2+bx(a≠0)經過A(6,0)、B(8,8)∴將A與B兩點坐標代入得:,解得:,∴拋物線的解析式是y=x2﹣3x.(2)設直線OB的解析式為y=k1x,由點B(8,8),得:8=8k1,解得:k1=1∴直線OB的解析式為y=x,∴直線OB向下平移m個單位長度后的解析式為:y=x﹣m,∴x﹣m=x2﹣3x,∵拋物線與直線只有一個公共點,∴△=16﹣2m=0,解得:m=8,此時x1=x2=4,y=x2﹣3x=﹣4,∴D點的坐標為(4,﹣4)(3)∵直線OB的解析式為y=x,且A(6,0),∴點A關于直線OB的對稱點A′的坐標是(0,6),根據軸對稱性質和三線合一性質得出∠A′BO=∠ABO,設直線A′B的解析式為y=k2x+6,過點(8,8),∴8k2+6=8,解得:k2=,∴直線A′B的解析式是y=,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即點N在直線A′B上,∴設點N(n,),又點N在拋物線y=x2﹣3x上,∴=n2﹣3n,解得:n1=﹣,n2=8(不合題意,舍去)∴N點的坐標為(﹣,).如圖1,將△NOB沿x軸翻折,得到△N1OB1,則N1(﹣,-),B1(8,﹣8),∴O、D、B1都在直線y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴,∴點P1的坐標為().將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點P2(),綜上所述,點P的坐標是()或().【點睛】運用了翻折變換的性質以及待定系數法求一次函數和二次函數解析式以及相似三角形的判定與性質等知識,利用翻折變換的性質得出對應點關系是解題關鍵.25、(1);(2)見解析.【解析】
(1)根據勾股定理即可得到結論;
(2)取格點S,T,得點R;取格點E,F,得點G;連接GR交MN于點P即可得到結果.【詳解】(1);(2)取格點S,T,得點R;取格點E,F,得點G;連接GR交MN于點P【點睛】本題考查了作圖-應
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 某小學防校園欺凌工作方案
- 小公司規章制度
- 借款陰陽合同樣本
- 蟋蟀的住宅-教學設計
- 上海京東代播合同樣本
- 佛像貼金施工合同樣本
- 書畫揭裱合同標準文本
- 買賣苞米合同樣本
- 2024年份四月份采礦權轉讓中老窿積水治理責任協議
- 2025三層別墅租賃合同
- SH/T 3046-2024 石油化工立式圓筒形鋼制焊接儲罐設計規范(正式版)
- 湖南省張家界市慈利縣2023-2024學年八年級下學期期中考試物理試題
- 金屬非金屬地下礦山監測監控系統建設規范
- 2024年蘇州市軌道交通集團有限公司招聘筆試參考題庫附帶答案詳解
- 新概念英語第2冊課文(完整版)
- 水培吊蘭的養殖方法要領
- 動物的遷徙行為與地球生態系統
- 【小學心理健康教育分析國內外文獻綜述4100字】
- 校園金話筒大賽(臨沂賽區)策劃書
- 正確使用文丘里面罩
- 破碎錘施工方案
評論
0/150
提交評論