初三數學上下冊知識點總結與重點難點總結_第1頁
初三數學上下冊知識點總結與重點難點總結_第2頁
初三數學上下冊知識點總結與重點難點總結_第3頁
初三數學上下冊知識點總結與重點難點總結_第4頁
初三數學上下冊知識點總結與重點難點總結_第5頁
已閱讀5頁,還剩7頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初三數學上下冊知識點總結與重點難點總結

初三數學知識整理與重點難點總結

第21章二次根式

知識框圖

理解并掌握下列結論:

(1)是非負數;(2);(3);

I.二次根式的定義和概念:

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

II.二次根式√ā的簡單性質和幾何意義

1)a≥0;√ā≥0[雙重非負性]

2)(√ā)=a(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]

3)√(a+b)表示平面間兩點之間的距離,即勾股定理推論。

IV.二次根式的乘法和除法

1運算法則

√a·√b=√ab(a≥0,b≥0)

-1-

√a/b=√a/√b(a≥0,b>0)

二數二次根之積,等于二數之積的二次根。

2共軛因式

如果兩個含有根式的代數式的積不再含有根式,那么這兩個代數式叫做共軛因式,也稱互為有理化根式。

V.二次根式的加法和減法

1同類二次根式

一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。

2合并同類二次根式

把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。

3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合并Ⅵ.二次根式的混合運算

1確定運算順序

2靈活運用運算定律

3正確使用乘法公式

4大多數分母有理化要及時

5在有些簡便運算中也許可以約分,不要盲目有理化

VII.分母有理化

分母有理化有兩種方法

I.分母是單項式

如:√a/√b=√a×√b/√b×√b=√ab/b

II.分母是多項式要利用平方差公式如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式

-2-

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

第22章一元二次方程

知識框圖

旋轉的定義

旋轉對稱中心

大于360°)。把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,

也就是說:

①中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。

②中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。

中心對稱圖形

正(2N)邊形(N為大于1的正整數),線段,矩形,菱形,圓

只是中心對稱圖形

-3-

平行四邊形等.

第24章圓

知識框圖

圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。

直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。

兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。

圓的平面幾何性質和定理

一有關圓的基本性質與定理

-4-

⑴圓的確定:不在同一直線上的三個點確定一個圓。

圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。

⑵有關圓周角和圓心角的性質和定理在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。一條弧所對的圓周角等于它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

⑶有關外接圓和〖有關圓的計算公式〗

1.圓的周長C=2πr=πd2.圓的面積S=πr;3.扇形弧長l=nπr/180

4.扇形面積S=π(R-r)5.圓錐側面積S=πrl

第25章概率初步

知識框圖

-5-

第26章二次函數

知識框圖

定義與定義表達式

一般地,自變量x和因變量y之間存在如下關系:

一般式:y=ax+bx+c(a≠0,a、b、c為常數),則稱y為x的二次函數。

頂點式:y=a(x-h)+k

交點式(與x軸):y=a(x-x1)(x-x2)

重要概念:(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)二次函數表達式的右邊通常為二次。

x是自變量,y是x的二次函數

x1,x2=[-b±√(b-4ac)]/2a(即一元二次方程求根公式)

二次函數的圖像在平面直角坐標系中作出二次函數y=x&sup2;的圖像,

可以看出,二次函數的圖像是一條永無止境的拋物線。

拋物線的性質

-6-

1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為P(-b/2a,(4ac-b&sup2;)/4a)

當-b/2a=0時,P在y軸上;當Δ=b&sup2;-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號

當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要異號

事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數解析式(一次函數)的斜率k的值。可通過對二次函數求導得到。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點個數

Δ=b&sup2;-4ac>0時,拋物線與x軸有2個交點。

Δ=b&sup2;-4ac=0時,拋物線與x軸有1個交點。

_______

Δ=b&sup2;-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b&sup2;-4ac的值的相反數,乘上虛數i,整個式子除以2a)

當a>0時,函數在x=-b/2a處取得最小值f(-b/2a)=4ac-b&sup2;/4a;在{x|x<-b/2a}上是減函數,在{x|x>-b/2a}上是增函數;拋物線的開口向上;函數的值域是{y|y≥4ac-b&sup2;/4a}相反不變

當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=ax&sup2;+c(a≠0)解析式:

-7-

第27章相似

知識框圖

相似三角形的認識

對應角相等,對應邊成比例的兩個三角形叫做相似三角形。(similartriangles)。互為相似形的三角形叫做相似三角形

相似三角形的判定方法

根據相似圖形的特征來判斷。(對應邊成比例,對應角相等)

1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構成的三角形與原三角形相似;

(這是相似三角形判定的引理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線分線段成比例的證明)

2.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;

直角三角形相似判定定理

1.斜邊與一條直角邊對應成比例的兩直角三角形相似。

2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。

射影定理

三角形相似的判定定理推論

推論一:頂角或底角相等的那個的兩個等腰三角形相似。

推論二:腰和底對應成比例的兩個等腰三角形相似。

推論三:有一個銳角相等的兩個直角三角形相似。

推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。

推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。

推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。

相似三角形的性質

1.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比。

2.相似三角形周長的比等于相似比。

3.相似三角形面積的比等于相似比的平方。

相似三角形的特例

能夠完全重合的兩個三角形叫做全等三角形。(congruenttriangles)

全等三角形是相似三角形的特例。全等三角形的特征:

1.形狀完全相同,相似比是k=1。

全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。

因此,相似三角形包括全等三角形。

全等三角形的定義

-9-

能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

由此,可以得出:全等三角形的對應邊相等,對應角相等。

(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;

(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;

(3)有公共邊的,公共邊一定是對應邊;

(4)有公共角的,角一定是對應角;

(5)有對頂角的,對頂角一定是對應角;

三角形全等的判定公理及推論

1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩定性的原因。

2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。

3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。

由3可推到

4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)

所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。

注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。

全等三角形的性質

1、全等三角形的對應角相等、對應邊相等。

2、全等三角形的對應邊上的高對應相等。

3、全等三角形的對應角平分線相等。

4、全等三角形的對應中線相等。

5、全等三角形面積相等。

6、全等三角形周長相等。

7、三邊對應相等的兩個三角形全等。(SSS)

8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)

9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)

10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)

11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)

全等三角形的運用

-10-

1、性質中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。

2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。

第28章銳角三角函數

知識框圖

第29章投影與視圖

知識框圖

-11-

代數重點難點總結

方程(組)

一、基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

二、一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟—推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)

3.根的判別式:b24ac

bc4.根與系數的關系(韋達定理):x1+x2=,x1x2=aa

逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。

5.常用等式:

三、可化為一元二次方程的方程

1.分式方程

⑴定義

-12-

⑵基本思想:去分母

⑶基本解法:①去分母法②換元法(如,)

⑷驗根及方法

2.無理方程

⑴定義

⑵基本思想:分母有理化

⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)

⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

四、列方程解應用題

一概述

列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。

函數及其圖象

★重難點★二次函數的圖象和性質。

一、平面直角坐標系

1.各象限內點的坐標的特點

2.坐標軸上點的坐標的特點

3.關于坐標軸、原點對稱的點的坐標的特點

4.坐標平面內點與有序實數對的對應關系

二、函數

1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

2.確定自變量取值范圍的原則:⑴使代數式有意義;⑵使實際問題有

意義。

3.畫函數圖象:⑴列表;⑵描點;⑶連線。

三、二次函數(定義→圖象→性質)

⑴定義:

-13-

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。⑶性質:a>0時,在對稱軸左側?,右側?;a<0時,在對稱軸左側?,右側?。

四、重要解題方法

1.用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,并應充分運用拋物線關于對稱軸對稱的特點,尋找新的點的坐標。

2.利用圖象二次函數中的k、b;a、b、c的符號。

解直角三角形

★重難點★解直角三角形

一、三角函數

1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.

2.特殊角的三角函數值:

0°30°45°60°90°

1sinα0

1222

cosα

102

2

tgα

1

3.互余兩角的三角函數關系:sin(90°-α)=cosα;?

4.三角函數值隨角度變化的關系

5.查三角函數表

二、解直角三角形

1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。

2.依據:①邊的關系:

②角的關系:A+B=90°

③邊角關系:三角函數的定義。

注意:盡量避免使用中間數據和除法。

三、對實際問題的處理

1.俯、仰角:

2.方位角、象限角:

3.坡度:tgα

4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。幾何

-14-

四邊形

★重難點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

┗→菱形——↑

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論