




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
AI-RAN:Telecom
?SoftBankCorp.
Contents
ExecutiveSummary 4
1.AI-RANVision:ShapingtheFutureofTelecom 5
1.1TelecomChallenges:BalancingMassiveCapitalInvestmentswithROI 5
1.2Opportunities:TransformingNetworkInfrastructurethroughAI-RAN 6
1.3FromCostCentertoPro?tCenter 7
2.RANEvolution:FromdRAN,vRAN,CloudRAN,OpenRANtoAI-RAN 7
2.1KeyDevelopmentsinRANEvolution 7
2.2AI-NativeNetworks:TheRoleofAIinRANTransformation 9
2.3AI-RANDe?nitions 9
3.HistoryofSoftBank'sAI-RANR&D 10
3.1EarlyResearchandAI-RANDevelopment 10
3.2ApplicationsofSoftBankAI-RANResearch 11
3.3PartnershipsandCollaboration 12
4.gRAN:GPU-basedAI-RANArchitecture 13
4.1KeyCharacteristicsofgRAN 13
4.2TheArchitectureofgRAN-basedAI-RAN 14
4.3gRANCaseStudy:NVIDIAAIAerial 15
5.IntroductionofAITRASbySoftBank 17
5.1KeyFeaturesofAITRAS 17
5.2KeyComponentsofAITRAS 17
5.3AI-NativeOrchestration 19
5.4EdgeAI 20
5.5KeyBene?tsofAITRAS 21
6.AITRASEvaluation 22
6.1OutdoorTestbedforAITRAS 22
6.2AITRASPerformanceEvaluation 24
6.3SoftBank’sL1EnhancementsinAITRAS 25
7.AI-and-RANVirtualizedInfrastructureinAITRAS 26
7.1SoftBankAI-and-RANApproach 26
7.2HardwareandResourceManagement 26
7.3AITRASAI-and-RANOrchestrator 27
7.4AgenticAI-ServerlessAPIPoweredbyNVIDIAAIEnterprise 28
7.5MeetingHighAvailabilityandPerformanceStandards 30
7.6SustainabilityandEnergyEfficiency 30
?SoftBankCorp.
3
AI-RAN:TelecomInfrastructurefortheAgeofAI
8.AITRASAIApplications 31
8.1TheShifttoComputing-CentricArchitecture 31
8.2UseCasesfortheAITRASAI-on-RAN 31
9.StrategicBusinessModelsandRevenueGeneration 35
9.1DemandForecasting,CustomerSegmentation,andBusinessModels 35
9.2AITRASAI-and-RANforNewRevenueGeneration 37
9.3TCOAnalysis 37
10.CaseStudy:AI-RANTCOAnalysis 37
10.1AI-RANDeploymentSimulationinUrbanArea,Tokyo 37
10.2RegionalPeakTrafficVariations 38
10.3ROIAnalysisofAI-RANwithNVIDIAGB200-NVL2 39
11.Conclusion 41
11.1ChartingtheFutureofTomorrow’sNetworks 41
11.2Long-TermVisionandSustainableGrowthStrategies 42
References 44
Acknowledgment 45
Glossary 45
4
AI-RAN:TelecomInfrastructurefortheAgeofAI
ExecutiveSummary
SoftBank’sAI-RANinitiativeaimstorevolutionizethetelecomindustrybyintegratingArti?cialIntelligence(AI)intoRadioAccessNetwork(RAN),transformingtraditionalnetworksfromcostcentersintointelligent,revenue-generatingplatforms.Withmobiledatatrafficcontinuouslygrowing,AI-RANisexpectedtomeetthedualchallengesofrisinginfrastructurecostsandintensifyingmarketcompetition.Thisapproachisexpectedtoenabletelecomoperatorstooptimizenetworkperformance,reducecosts,andcreatenewrevenuestreamsthroughAI-enabledservices.
AI-RANmaybeimplementedleveragingasoftware-de?ned,GPU-poweredarchitecturecalledgRAN(GPU-basedRAN).Thisadvancedarchitecturesupportshigh-performancenetworkoperationsbyutilizingtheparallelprocessingpowerofGPUs.gRANenablesreal-timedataprocessing,intelligentresourcemanagement,andscalablemulti-tenantoperations.AsthesameplatformsupportsbothnetworkandAIworkloads,gRANoffersunparalleled?exibility,enablingseamlessintegrationofRANservicesandAI-nativeapplicationssuchasautonomousdriving,real-timerobotics,andedgecomputing.
SoftBank’sAI-RANproduct,AITRAS,exempli?estheconvergenceofAIandtelecominfrastructure.AITRASintegratesRANandAIworkloadsintoasingle,AI-nativecomputingenvironment,offeringcarrier-gradeRANfunctionalitywithenhancedscalabilityandefficiency.Thesystemsupportsmulti-tenantoperations,enablingnetworkproviderstorunAIservicesalongsidetraditionalnetworkfunctions,creatingnewrevenueopportunities.AITRASispoweredbyNVIDIAGH200GraceHopperSuperchip,whichenablereal-timeAIinferenceandnetworkmanagementwithoptimalpowerefficiency.
Fieldandlaboratoryevaluationshavecon?rmedAITRAS’sabilitytodelivercarrier-gradestability,higherenergyefficiency,andcost-efficientoperations.Inurbantrials,thesystemsuccessfullysupportedhigh-densitytrafficscenarios,whilelabtestscon?rmedthatitspowerconsumptionwascomparabletothatofcurrentRANsystems,despitehandlingsigni?cantlyhigherworkloads.ThisbalancebetweenperformanceandsustainabilitypositionsAI-RANasatransformativeforceintelecominfrastructure.
Toaccelerateindustryadoption,SoftBankplayedaleadingroleinestablishingtheAI-RANAllianceincollaborationwithmajortechnologypartnerssuchasNVIDIA,Arm,Ericsson,Nokia,Samsung,andT-Mobile.Thisallianceisfosteringinnovationthroughcollaborativeresearchanddevelopmentactivities,advancingAI-RANtechnologieswhilealigningwiththeglobalstandardssetbyorganizationslike3GPPandO-RANAlliance.
SoftBankenvisionsaphaseddeploymentroadmapforAITRAS,SoftBank’sAI-RANproduct,beginningwithOver-the-Airpilotina?eldareain2024,followedbycommercializationby2026.
5
AI-RAN:TelecomInfrastructurefortheAgeofAI
1.AI-RANVision:ShapingtheFutureofTelecom
ThevisionofSoftBankAI-RANR&DistorevolutionizetelecommunicationsbyintegratingAIintothecoreofRANinfrastructure,transformingtraditionalRANintointelligent,adaptive,andrevenue-generatingplatforms.
Figure1.AI-RAN:AIandRANintegration
1.1TelecomChallenges:BalancingMassiveCapitalInvestmentswithROI
Thetelecomindustryisfacingsigni?cantcapitalexpenditurepressuresduetorapidlyevolvingtechnologiesandincreasingdatademands.TheGSMA'sTheMobileEconomy2024report
1
revealsthatintheglobalmobilemarket,totaloperatorrevenuesareprojectedtogrowfrom$1.11trillionin2023to$1.25trillionby2030,representingamodestcompoundannualgrowthrate(CAGR)of1.74%.However,totalcapitalinvestmentsthrough2030areestimatedat$1.5trillion,exceedingtotalsingle-yearrevenues.Thishighlightsacriticalchallengefacedbyoperatorsworldwide.
Foremostamongthesechallengesisthesubstantialinvestmentcostassociatedwith5Gnetworkdeployment.Newinfrastructurerequirements,suchastheutilizationofhigherfrequencybandsandthemassdeploymentofMIMOantennas,necessitatesigni?cantfunding.Additionally,theimpactofincreasedtrafficfromgenerativeAIapplicationslikenewlyemergingLargeLanguageModels(LLMs)oninfrastructuremustalsobeconsidered.Thesupplyofequipmentforthisinfrastructureiscurrentlydependentonafewspeci?cvendors,makingitdifficulttoreducecostsandencouragecommoditization.Additionally,therapidproliferationofIoTdevicesandthegrowingpopularityofhigh-de?nitionvideostreamingnecessitatecontinuednetworkcapacityexpansion.Meanwhile,intensepricecompetitionin
1GSMA,TheMobileEconomy2024Report
:/solutions-and-impact/connectivity-for-good/mobile-economy/wp-
content/uploads/2024/02/260224-The-Mobile-Economy-2024.pdf
6
AI-RAN:TelecomInfrastructurefortheAgeofAI
telecomservicesmakesitincreasinglydifficulttorecoverinvestmentsthroughtraditionaldataservicefeemodels.Furthermore,theemergenceofOver-The-Top(OTT)providerswhooperatewithouttheirowncommunicationsinfrastructureimpactstelecomoperators'pro?tability.
AccordingtoGSMA'sTheMobileEconomy2024report,despitediscussionsaboutapotentialslowdowningrowth,monthlyglobalmobiledatatrafficperconnectionsawasigni?cantincreasefrom10.2GBin2022to12.8GBin2023,representingthelargestabsolutegrowthsincedatatrackingbeganin2016.Lookingforward,itisprojectedthattotalmobiledatatrafficwillgrowatanaverageannualrateof23%between2023and2030,andexceed465exabytes(EB)permonthbytheendofthedecade.Thisnetworkresourcestrainisforcingtelecomoperatorstomakesubstantialcapitalinvestments.Consequently,dependingontheirrevenuemodels,operatorsfacetheriskofbeingunabletorecovertheirincreasinginvestmentcosts,presentingacriticalmanagementchallenge.
Concurrently,pricecompetitionfortelecomserviceshasintensi?ed,makingitchallengingtorecoupinvestmentsthroughtraditionaldatacommunicationfeerevenuemodels.
Inthiscontext,telecomoperatorsareconfrontedwiththechallengeofimprovinginvestmentefficiency.Speci?cally,theyfacetwokeyissues:reducinginfrastructuredevelopmentcostsandcreatingnewrevenuestreams.Thisnecessitatesnotonlymoreefficientoperationandgreatercostreductionsinnetworkinfrastructure,butalsothedevelopmentofvalue-addedservicesandtheestablishmentofnewbusinessmodelstosecureadditionalrevenuesources.
1.2Opportunities:TransformingNetworkInfrastructurethroughAI-RAN
AI-RANpresentsauniqueopportunitytofundamentallytransformnetworkinfrastructure,makingitmoreadaptable,efficient,andcapableofsupportingnewAIservices.ByleveragingAI,telecomoperatorscanoptimizenetworkoperationsinrealtime,improveresourceutilization,andintroducenewrevenue-generatingopportunities.
OneofthekeyopportunitiesofferedbyAI-RANisitsabilitytoshiftfromastatic,hardware-dependentnetworkarchitecturetoadynamic,AIandsoftware-drivenapproach.AIallowsforintelligentdecision-makingatthenetworkedge,enablingreal-timeresponsestotrafficconditions,userdemand,andservicerequirements.Thislevelofadaptabilityensuresthatnetworkswillalwaysoperateatpeakefficiency,providebetterqualityofservice,andsuppressenergyconsumption.
Furthermore,AI-RANopensthedoortonewserviceofferingsthatwerepreviouslynotfeasible.Forexample,advancednetworkslicing,enabledbyAI-drivenresourcemanagement,allowsoperatorsto
7
AI-RAN:TelecomInfrastructurefortheAgeofAI
createcustomizedend-to-endvirtualnetworkstailoredtothespeci?cneedsofdifferentcustomersegments,suchaslow-latencyconnectionsforgamingandLLMinferencingandhigh-reliabilitynetworksforenterprisemissioncriticalapplications.Thisabilitytoofferdifferentiatedservicesnotonlyenhancescustomersatisfactionbutalsocreatesnewrevenuestreamsforoperators.NewEdgeAIinferencingservicesarealsopossibleonthesameAI-RANinfrastructure.
1.3FromCostCentertoProfitCenter
AI-RANisseenasastrongapproachtoenhancingthereturnoninvestmentinnetworkinfrastructurefortelecomoperators.OneofAI-RAN'skeyfeatures,multi-tenancy,notonlyutilizesRANresourcesforhigh-throughputbroadbandcapacity,wirelessqualityimprovement,andnetworkoptimizationbutalso?exiblyallocatesresourcesforedgecomputinginfrastructuresthatsupportAItrainingandinferencing.Thismulti-purposecapabilityenablesoperatorstoimprovemobilenetworkqualitywhilecreatingnewrevenueopportunities.
ByadoptingAI-RAN,telecomoperatorscanmaximizethepro?tabilityoftheirnetworkinvestmentsandestablishsustainablegrowthmodels.Thistransformationconvertstraditionalnetworkinfrastructurefromacostcenterintoapro?tcenter,enablingoperatorstoachievesustainablegrowththroughnewbusinessmodels.
Figure2.AI-RANrede?nestelecombusiness
2.RANEvolution:FromdRAN,vRAN,CloudRAN,OpenRANtoAI-RAN
2.1KeyDevelopmentsinRANEvolution
TheRANlandscapehasundergonearemarkableevolution,transitioningfromtraditionalhardware-centricmodelstomoreadvanced,AIandsoftware-basedarchitectures.ThisevolutioncanbecharacterizedbytheprogressionfromDistributedRAN(dRAN)toVirtualizedRAN(vRAN),CloudRAN(C-
8
AI-RAN:TelecomInfrastructurefortheAgeofAI
RAN),OpenRAN,andultimatelyAI-RAN.
2.1.1EvolutionfromdRANtovRAN,C-RAN,andOpenRANtowardAI-RAN
dRANrepresentsthetraditionalRANsetup,whereradiounits,distributedacrosssites,arecloselycoupledwithbasebandunitsforsignalprocessing.Thissetupoftenleadstoincreasedcostsincludingsiteassets,inefficientresourceuse,anddelaysinserviceevolution.
vRANemergedasaresponsetothesechallengesbyvirtualizingbasebandfunctions.WithvRAN,networkfunctionscouldbeseparatedfromdedicatedhardwareanddeployedoncommercialoff-the-shelf(COTS)hardware,enhancing?exibilityandscalability.
C-RANfurtheradvancedthisconceptbycentralizingbasebandprocessinginacloudenvironment.Thecentralizedprocessingreducedhardwarerequirementsatindividualsites,allowingbetterpoolingofresourcesandcentralizedmanagement.Itimprovedefficiencybutrequiredarobustbackhaultomanagelatencychallenges.
OpenRANbuildsuponthevirtualizedandcloud-basedapproachesbyintroducingstandardizationandinteroperability.ItdisaggregatesRANcomponents,allowingoperatorstomixandmatchsolutionsfrommultiplevendors,breakingvendorlock-in,reducingcosts,andencouraginginnovation.Thisopennesssupportsgreater?exibilityandadaptabilityinnetworkdeployments.
AI-RANintegratesAIcapabilitiesintoRANoperationsoveracommonacceleratedinfrastructureandsorepresentsthegreatestadvance.ByprovidingAIandRAN,AIforRAN,andAIonRAN,operatorscanmovebeyondmereconnectivityandmakenetworksmoreintelligent,self-optimizing,andproactive.
2.1.2DriversofTransformation
Thekeydriversbehindthesetransformationsincludecostoptimization,performanceoptimization,improving?exibilitywithsoftware,enhancingoperationalefficiencyandcapturingnewmonetizationopportunities.TraditionalRANsolutionsrequiresigni?cantcapitalexpenditure(CAPEX)forspecializedhardware,whiledRANalsofacedscalabilitylimitationsandhighoperationalcosts.Movingtovirtualizedandcloud-basedsolutionsaddressesthesechallenges,allowingoperatorstominimizecostsandfullyutilizethescalabilitypotentialofthecloudinfrastructure.OpenRANandAI-RANtakethesebene?tsfurtherbyenabling?exibilitythroughopeninterfaces,greateroperationalefficiency,andnewmonetizationmethodsbasedonAIservices.
9
AI-RAN:TelecomInfrastructurefortheAgeofAI
2.2AI-NativeNetworks:TheRoleofAIinRANTransformation
AIisplayingatransformativeroleintheevolutionofRANbyprovidingadvancedtoolstooptimizeperformance,automateresourceallocation,andwillultimatelytransformhowmodernnetworksoperate.
ImprovingSpectralEfficiency,OptimizingPerformanceandResourceManagement:AIisfundamentallychanginghowRANresourcesaremanagedbymakingoperationsmoreadaptiveandefficient.IntraditionalRANsetups,resourceallocationandmanagementrequiremanualcon?guration,makingithardtoreacttouserdemands.AI,however,enablesalevelofdynamicadaptabilitythatwaspreviouslyunachievable.Forexample,AI-nativemodelscanautomaticallyallocatebandwidthbasedonreal-timeusagepatterns,manageinterferencemoreeffectively,andensureoptimalloadbalancingacrossthenetwork.Thisimprovesspectralefficiencyandoptimizesperformanceandmakesbetteruseoftheavailableinfrastructure.
FromReactivetoPredictiveModels:Oneofthemostsigni?cantcontributionsofAItoRANisitsabilitytoconvertnetworksthatmerelyreactintothosethatcanpredict.Traditionally,networkmanagementrespondstoissuesonlyaftertheyoccur.AIchangesthisparadigmasitspredictivecapabilitiesallownetworkstoanticipateproblemsandtakepreventiveaction.Machinelearningalgorithmscananalyzevastamountsofnetworkdatatoidentifypatternsandpredictpotentialfaultsorcongestionpointsbeforetheyimpactservicequality.Thisnotonlyimprovesreliabilitybutalsohelpsminimizedowntimeandoperationalcosts.
UnlockingRevenuePotential:AI-nativenetworksaretransformingRANassetsfromtraditionalcostcentersintorevenue-generatingcenters.GenerativeAIintroducesnewuserexperiencesbyprovidingEdgeAIinferencinganddynamicresourceallocation,leadingtobetterservicequalityandhighercustomersatisfaction.GenerativeAIalsoidenti?esopportunitiesformonetizingnetworkcapabilities,suchasofferingpremiumservices,targetedadvertising,andedgecomputingsolutions.ThisshiftnotonlymaximizesthevalueofRANinvestmentsbutalsopositionsnetworksasstrategicassetsdrivingpro?tability.
AI-RANisthusattheforefrontofamoreproactiveandefficientnetworkmanagementapproach,transformingRANintoakeyenablerofintelligentandautonomousnetworkservices.
2.3AI-RANDefinitions
AI-RANreferstotheapplicationofarti?cialintelligencetechnologytotheRAN.Itaimstoimprovemobilenetworkefficiencyandoptimizepowerconsumption,whileenhancingtheutilizationoftheexistinginfrastructure.TheconceptinvolveshostingbothAIapplicationsandvirtualRAN(vRAN)softwareonthe
10
AI-RAN:TelecomInfrastructurefortheAgeofAI
sameinfrastructure,allowingtelecomoperatorstogeneraterevenuefrombothnetworkaccessandAIserviceswithasinglecapitalinvestment.
TheAI-RANAlliancehasestablishedthreeitemstoaddressdifferentaspectsofAIintegrationinRAN:
AI-for-RAN:FocusesonusingAItoenhanceRANperformance.ItexploreshowAIcanimproveoperationefficiency,boostcapacity,andachievekeyperformancetargetsintheradioaccessnetwork.
AI-and-RAN:InvestigateshowtousethesameinfrastructuretorunbothRANworkloadsandAIworkloadssimultaneously.ThegoalistoincreaseresourceutilizationandopenupnewrevenuestreamsfortelcosbyhostingvariousAIapplicationsonthesameplatformsthatrunnetworkfunctions.
AI-on-RAN:AddressessolutionsforrunningAIapplicationsontheradioaccessnetwork.ItfocusesonenhancingRANtoensureitcanhandletheincreasingdemandsofAIandgenerativeAIapplicationswithoutcompromisingkeyfactorslikelatencyandsecurity.
Figure3.ThreeitemstoaddressdifferentaspectsofAIintegrationinRAN
TheseitemscollectivelyaimtointegrateAIintothefabricoftheradioaccessnetwork,transformingnetworksintoself-organizing,self-optimizing,andself-managingsystemsthatcanhandlereal-timechanges,anticipatemaintenanceneeds,andmoreefficientlymanageresources.
3.HistoryofSoftBank'sAI-RANR&D
3.1EarlyResearchandAI-RANDevelopment
SoftBankcontinuestoexplorenewwaystocreatevaluebyintegratingtraditionaltelecominfrastructure
11
AI-RAN:TelecomInfrastructurefortheAgeofAI
withAIamidsttherapidinnovationinAItechnology.Recognizingthatthefullperformanceof5Gremainsunrealizedsinceitsintroduction,SoftBankbeganeffortstoenhance5GthroughAIandMachineLearning(ML).
SoftBankisleadingthedevelopmentofAI-RAN,anewarchitecturethatintegratesAIapplicationsandsoftware-basedRANintoasinglecomputer.AI-RANenhancesthecapabilitiesandqualityofRANwhilealsoprovidingasharedcomputingplatformforAIapplicationsacrossvariousindustries.SoftBankaimstodeployAI-RANequipmentinAIdatacentersdistributedthroughoutJapan,directlyconnectingSoftBankbasestationstotheseAIdatacenterstooffersecureandlow-latencyAIservices.
3.2ApplicationsofSoftBankAI-RANResearch
Inthepast,theprimarystrategyforachievinghigh-speed,high-capacitywirelesscommunicationwastoincreasethefrequencybandsused,asevidencedbythetransitionfrom3GtoLTEand5G.However,theemergenceofAI-RAN,whichcanenhanceuserexperiencewithoututilizingmorefrequencybands,holdsgreatpotentialforeffectivelyutilizingthe?nitepublicresourceoftheradiospectrum.Withthetransitionfrom5Gto6Gnetworksapproaching,theimportanceofAI-RANisexpectedtostrengthenevenmore.
TheAI-RANdatacenterbeingdevelopedbySoftBankwillallowboth"RANoperations"and"AIapplications"torunsimultaneouslyonthesameserver.Thisadvancementenablestelecomoperatorstosecuretworevenuestreams—RANandAI—withasinglecapitalinvestment.Moreover,byintegratingdifferentservices,operatorscanimprovetheoperationalefficiencyoftheirinfrastructure.Consequently,AI-RANholdsthepotentialtosigni?cantlyimprovethereturnoncapitalinvestmentfortelecomoperators.
CaseStudy:ApplicationofAIforchannelinterpolationinlowerlayersofwirelesscommunication
Indenseenvironmentswithmultiplebasestationsandterminals,radiosignalsareoftendistortedbymultipathfading.Asaresult,conventionalsignalprocessingtechnologymayfailtoaccuratelyestimatewirelesscharacteristics,leadingtolowerthroughput.
Toaddressthis,weappliedAI-nativesuper-resolutiontechnology,originallyusedinimageanalysis,toradiosignalprocessing.SimulationswereconductedtoevaluatethepotentialuplinkthroughputimprovementsbyreconstructingdegradedsignalsusingAI.AftertrainingtheAImodelwithsimulatedradiosignaldatabasedonreal-worldenvironmentalconditionsandtestingitwithuplinksignals,a30%improvementinuplinkthroughputcomparedtoconventionalsignalprocessingtechnologywasobserved(Figure4).
12
AI-RAN:TelecomInfrastructurefortheAgeofAI
Figure4.Comparisonresultofuplinksignals:30%throughputgain
3.3PartnershipsandCollaboration
Figure5.AI-RANAlliancelaunchceremonyatGSMAMobileWorldCongressBarcelona2024
SoftBankisacceleratingthedevelopmentofAI-RANthroughitspartnershipwithNVIDIAandotherindustryleaders,havingbegunthedevelopmentofAI-RANsolutionsonnewhardwaresuchastheNVIDIAGraceHopper200Superchip(GH200),whichiscurrentlyevolvingintotheNVIDIAGraceBlackwellplatform.
TopromotethewidespreadadoptionanddevelopmentofAI-RANtechnology,SoftBankhaspartneredwithindustryleadersincludingNVIDIA,Arm,T-Mobile,Ericsson,Nokia,andSamsungtoestablishtheAI-
13
AI-RAN:TelecomInfrastructurefortheAgeofAI
RANAlliance
2
.SinceitslaunchatGSMAMobileWorldCongressBarcelona2024,thealliancehasgrownto58members(asofDecember2024),encompassingadiversemixoftelecomoperators,semiconductorcompanies,andacademicinstitutionsunitedbythemissionofadvancingRANperformanceandcapabilitiesthroughAIinnovation.
SoftBankbelievesthatAI-RANhasthepotentialtobecomethetechnologythatwillsigni?cantlyimpactnotonlythetelecomindustrybutalsosocietyasawhole.Withtheimminenttransitionfrom5Gto6Gnetworks,theimportanceofAI-RANisundeniable.SoftBankwillcontinuetofocusoncontinuingAI-RANdevelopmenttoinitiateanewparadigmshiftforthe6Gera.
SoftBank'sAI-RANR&Deffortshavethepotentialtorevolutionizetelecomnetworksandcreatenewbusinessopportunitiesacrossvariousindustries.
4.gRAN:GPU-basedAI-RANArchitecture
gRAN,atermintroducedbySoftBank,standsforGPU-basedRANthatoffersanarchitecturefordeployingAI-RAN,consideredthedesirableevolutionarystageofRANfollowingvRAN,cRAN,andO-RAN.TheintroductionofgRANmarksasigni?canttechnologicalleapintheevolutionoftheradioaccessnetwork.ByleveragingthepowerofGPUsinadditiontoCPUs,gRANenhancestheefficiency,scalability,and?exibilityofRANinfrastructures;itsupportsadvancedAI-nativefunctionsandmeetstheever-growingdemandsofAIapplicationsandmoderntelecomnetworks.
4.1KeyCharacteristicsofgRAN
ThetransitionfromtraditionalRANarchitecturestosoftware-drivenapproacheswithhigherperformancehaspavedthewayforgRAN.AsRANbecomesvirtualizedandopen,andmostimportantlysoftware-de?ned,itlaysthefoundationforportingRANoverGPU-basedacceleratedinfrastructure,andbringinganewlevelofcomputationalpowerandefficiencywithgRAN.
4.1.1WhyGPUsforvRANEvolution?
GPUsarewell-suitedforhandlingthehighlyparallelprocessingworkloadscommoninmodernRANenvironments.UnlikeCPUs,whichareoptimizedforserialprocessing,GPUsexcelatexecutingintensivematrixcalculationsandmultipletaskssimultaneously,makingthemidealforreal-timeRANdataandsignalprocessing.Thisparallelismisparticularlyimportantinhandlingthecomplexalgorithmsrequiredfor5Gandfuture6Gtechnologies,suchasmassiveMIMO,beamforming,and
2FormoredetailsabouttheAI-RANAlliance’smissionandinitiatives,refertotheirwhitepaperat
/wp-content/uploads/2024/12/AI-
RAN_Alliance_Whitepaper.pdf
14
AI-RAN:TelecomInfrastructurefortheAgeofAI
energyreduction.UtilizingGPUsinadditiontoCPUsallowstelecomoperatorstohandletheseworkloadsmoreefficiently,reducelatency,andimproveoverallnetworkperformanceandefficiency.
4.1.2TheTechnologicalLeapwithGPU-basedvRAN(gRAN)
GPU-basedRANenablesmodernAIserviceslikeLLMinferencingbyprovidingthecomputationalpowerneededforreal-timedataprocessinganddecision-makingattheedge.ThisallowsRANtohandlecomplexAIworkloadsefficiently,reducinglatencyandenhancingresponsiveness.Additionally,GPUsfacilitatedynamicresourceoptimization,suchasadvancedSelf-OrganizingNetwork(SON),byenablingrapidanalysisandadaptationofnetworkresourcestochangingdemands,ensuringoptimalperformanceandreliabilityinRANenvironments.TheseattributesallowgRANyieldthemoredynamicandresponsivenetworkscrucialforsupportingemergingusecasessuchasGenerativeAI/LLMinferencing,augmentedreality(AR),virtualreality(VR),andotherdata-intensiveapplications.
4.2TheArchitectureofgRAN-basedAI-RAN
ThearchitectureofgRANconsistsofseveralkeycomponentsthatworktogethertocreateahighlyprogrammable,intelligent,andhighperformingnetworkenvironment.ThecoreelementsofgRANaretheRadioUnit(RU),DistributedUnit(DU),CentralizedUnit(CU),theintegrationofAIcapabilities,andamulti-tenantanddynamicorchestrator.
RadioUnit(RU):TheRUhandlestheradiofrequency(RF)signals,convertingthembetweenanaloganddigitalformats.Itisresponsibleforcommunicatingwithuserdevicesandservesasthemobileuser’sentrypointtotheRAN.
DistributedUnit(DU):TheDUisresponsibleforlower-layerprocessing,includingreal-timetaskslikescheduling,beamforming,and
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 服裝內容推廣方案(3篇)
- DB23-T2959-2021-篤斯越桔種質資源圃營建技術規程-黑龍江省
- DB23-T2881-2021-沙地云杉播種育苗技術規程-黑龍江省
- 國際醫療中心管理制度
- 國企采購需求管理制度
- 培訓學校支出管理制度
- 尾氣回收設施管理制度
- 供電單位復工方案(3篇)
- 合同存檔安全管理制度
- 養殖企業飼料管理制度
- SA8000:2014社會責任-中文
- 四年級如何進行有效期末復習課件
- 腫瘤醫院推廣方案
- 動物出血性肺炎預防與治療
- 公路工程安全風險辨識與防控手冊
- 研究生開題報告評審表
- 統編版語文二年級下冊《黃帝的傳說》教學課件
- 海南大學本科畢業論文正文范文
- SCA涂膠機定量機維護作業指導書
- XX跨境電商公司運營人員晉升及淘汰制度方案
- 構建中學人工智能教育的教學計劃
評論
0/150
提交評論