




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市宜興市丁蜀區市級名校2024年中考數學全真模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.2.直線AB、CD相交于點O,射線OM平分∠AOD,點P在射線OM上(點P與點O不重合),如果以點P為圓心的圓與直線AB相離,那么圓P與直線CD的位置關系是()A.相離 B.相切 C.相交 D.不確定3.已知空氣的單位體積質量是0.001239g/cm3,則用科學記數法表示該數為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm34.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經測量AB=2m,則樹高為()米A. B. C.+1 D.35.七年級1班甲、乙兩個小組的14名同學身高(單位:厘米)如下:甲組158159160160160161169乙組158159160161161163165以下敘述錯誤的是()A.甲組同學身高的眾數是160B.乙組同學身高的中位數是161C.甲組同學身高的平均數是161D.兩組相比,乙組同學身高的方差大6.二次函數y=(2x-1)2+2的頂點的坐標是()A.(1,2) B.(1,-2) C.(,2)
D.(-,-2)7.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.8.如圖,是半圓圓的直徑,的兩邊分別交半圓于,則為的中點,已知,則()A. B. C. D.9.在數軸上表示不等式組的解集,正確的是()A. B.C. D.10.一元二次方程mx2+mx﹣=0有兩個相等實數根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,利用圖形面積的不同表示方法,能夠得到的代數恒等式是____________________(寫出一個即可).12.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.13.如圖,用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽,則這個紙帽的高是_____cm.14.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.15.因式分解:.16.觀察下列各等式:……根據以上規律可知第11行左起第一個數是__.17.如圖,線段AB是⊙O的直徑,弦CD⊥AB,AB=8,∠CAB=22.5°,則CD的長等于___________________________.三、解答題(共7小題,滿分69分)18.(10分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.19.(5分)先化簡,再求值:(1﹣)÷,其中x是不等式組的整數解20.(8分)某地區教育部門為了解初中數學課堂中學生參與情況,并按“主動質疑、獨立思考、專注聽講、講解題目”四個項目進行評價.檢測小組隨機抽查部分學校若干名學生,并將抽查學生的課堂參與情況繪制成如圖所示的扇形統計圖和條形統計圖(均不完整).請根據統計圖中的信息解答下列問題:本次抽查的樣本容量是
;在扇形統計圖中,“主動質疑”對應的圓心角為
度;將條形統計圖補充完整;如果該地區初中學生共有60000名,那么在課堂中能“獨立思考”的學生約有多少人?21.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數式表示)()如圖②,四邊形是某市規劃用地的示意圖,經測量得到如下數據:,,,,請你利用所學知識探索它的最大面積(結果保留根號)22.(10分)如圖,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,2)(1)求拋物線的表達式;(2)拋物線的對稱軸與x軸交于點M,點D與點C關于點M對稱,試問在該拋物線的對稱軸上是否存在點P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.23.(12分)某地鐵站口的垂直截圖如圖所示,已知∠A=30°,∠ABC=75°,AB=BC=4米,求C點到地面AD的距離(結果保留根號).24.(14分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數的解析式及點A,B的坐標;(Ⅱ)設點Q在第一象限的拋物線上,若其關于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題分析:根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形2、A【解析】
根據角平分線的性質和點與直線的位置關系解答即可.【詳解】解:如圖所示;∵OM平分∠AOD,以點P為圓心的圓與直線AB相離,∴以點P為圓心的圓與直線CD相離,故選:A.【點睛】此題考查直線與圓的位置關系,關鍵是根據角平分線的性質解答.3、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數法—表示較小的數.4、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.5、D【解析】
根據眾數、中位數和平均數及方差的定義逐一判斷可得.【詳解】A.甲組同學身高的眾數是160,此選項正確;B.乙組同學身高的中位數是161,此選項正確;C.甲組同學身高的平均數是161,此選項正確;D.甲組的方差為,乙組的方差為,甲組的方差大,此選項錯誤.故選D.【點睛】本題考查了眾數、中位數和平均數及方差,掌握眾數、中位數和平均數及方差的定義和計算公式是解題的關鍵.6、C【解析】試題分析:二次函數y=(2x-1)+2即的頂點坐標為(,2)考點:二次函數點評:本題考查二次函數的頂點坐標,考生要掌握二次函數的頂點式與其頂點坐標的關系7、A【解析】
根據輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應用,熟練掌握順流與逆流速度的性質是解題關鍵.8、C【解析】
連接AE,只要證明△ABC是等腰三角形,AC=AB即可解決問題.【詳解】解:如圖,連接AE,
∵AB是直徑,
∴∠AEB=90°,即AE⊥BC,
∵EB=EC,
∴AB=AC,
∴∠C=∠B,
∵∠BAC=50°,
∴∠C=(180°-50°)=65°,
故選:C.【點睛】本題考查了圓周角定理、等腰三角形的判定和性質、線段的垂直平分線的性質定理等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.9、C【解析】
解不等式組,再將解集在數軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.10、C【解析】
由方程有兩個相等的實數根,得到根的判別式等于0,求出m的值,經檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數根;根的判別式的值等于0,方程有兩個相等的實數根;根的判別式的值小于0,方程沒有實數根.二、填空題(共7小題,每小題3分,滿分21分)11、(a+b)2=a2+2ab+b2【解析】
完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應的面積是解題的關鍵.12、【解析】
要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據∠B=30°和OB的長求得,OE可以根據∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質13、【解析】
先求出扇形弧長,再求出圓錐的底面半徑,再根據勾股定理即可出圓錐的高.【詳解】圓心角為120°,半徑為6cm的扇形的弧長為4cm∴圓錐的底面半徑為2,故圓錐的高為=4cm【點睛】此題主要考查圓的弧長及圓錐的底面半徑,解題的關鍵是熟知圓的相關公式.14、4【解析】試題分析:設OB的長度為x,則根據二次函數的對稱性可得:點B的坐標為(x+2,0),點A的坐標為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數的性質.如果二次函數與x軸的兩個交點坐標為(,0)和(,0),則函數的對稱軸為直線:x=.在解決二次函數的題目時,我們一定要注意區分點的坐標和線段的長度之間的區別,如果點在x的正半軸,則點的橫坐標就是線段的長度,如果點在x的負半軸,則點的橫坐標的相反數就是線段的長度.15、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續分解因式.因此,先提取公因式后繼續應用平方差公式分解即可:.16、-1.【解析】
觀察規律即可解題.【詳解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n行=n2,第11行=112=121,又∵左起第一個數比右側的數大一,∴第11行左起第一個數是-1.【點睛】本題是一道規律題,屬于簡單題,認真審題找到規律是解題關鍵.17、4【解析】
連接OC,如圖所示,由直徑AB垂直于CD,利用垂徑定理得到E為CD的中點,即CE=DE,由OA=OC,利用等邊對等角得到一對角相等,確定出三角形COE為等腰直角三角形,求出CE的長,進而得出CD.【詳解】連接OC,如圖所示:∵AB是⊙O的直徑,弦CD⊥AB,∴OC=AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE為△AOC的外角,∴∠COE=45°,∴△COE為等腰直角三角形,∴CE=OC=,∴CD=2CE=,故答案為.【點睛】考查了垂徑定理,等腰直角三角形的性質,以及圓周角定理,熟練掌握垂徑定理是解本題的關鍵.三、解答題(共7小題,滿分69分)18、見解析【解析】
根據條件可以得出AD=AB,∠ABF=∠ADE=90°,從而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出結論.【詳解】證明:∵四邊形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.19、x=3時,原式=【解析】
原式括號中兩項通分并利用同分母分式的減法法則計算,再利用除以一個數等于乘以這個數的倒數將除法運算化為乘法運算,約分得到最簡結果,求出不等式組的解集,找出解集中的整數計算得出到x的值,代入計算即可求出值.【詳解】解:原式=÷=×=,解不等式組得,2<x<,∵x取整數,∴x=3,當x=3時,原式=.【點睛】本題主要考查分式額化簡求值及一元一次不等式組的整數解.20、(1)560;(2)54;(3)補圖見解析;(4)18000人【解析】
(1)本次調查的樣本容量為224÷40%=560(人);(2)“主動質疑”所在的扇形的圓心角的度數是:360°×84560=54o;(3)“講解題目”的人數是:560?84?168?224=84(人).(4)60000×=18000(人),
答:在課堂中能“獨立思考”的學生約有18000人.21、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,FD'即為所求最大值,再求得
△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,FD’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應用,涉及知識點有圓周角定理、不等式的性質、解直角三角形及轉化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關鍵.本題考查知識點較多,綜合性很強,計算量很大,難度適中.22、(1)y=﹣x2+x+2;(2)滿足條件的點P的坐標為(,)或(,﹣)或(,5)或(,﹣5).【解析】
(1)利用待定系數法求拋物線的表達式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個點的坐標.【詳解】(1)∵拋物線與x軸交于點A(﹣1,0),B(4,0),∴設拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對稱軸為直線x=,∴M(,0),∵點D與點C關于點M對稱,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設點P(,m),∴MP=|m|,∵M(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當△BMP∽ADB時,∴,∴,∴m=±,∴P(,)或(,﹣),②當△BMP∽△BDA時,,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點P的坐標為P(,)或(,﹣)或(,5)或(,﹣5).【點睛】本題考查了二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.23、C點到地面AD的距離為:(2+2)m.【解析】
直接構造直角三角形,再利用銳角三角函數關系得出BE,CF的長,進而得出答案.【詳解】過點B作BE⊥AD于E,作BF∥AD,過C作C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 租用意向協議書
- 經營撤股協議書
- 臺球廳承包合同協議書
- 租憑工廠協議書
- 美發合資協議書
- 聘請砍樹協議書
- 經營轉讓協議書
- 向廠方解除合同協議書
- 自愿出資協議書
- 拱墅區土方運輸協議書
- 起重裝卸機械操作工(中級工)理論考試復習題庫(含答案)
- 樁基施工安全教育培訓
- 臨床醫學教師的勝任力
- 江西天宇化工有限公司30萬噸年離子膜氯堿項目環境影響報告書
- 《計算機網絡實驗教程》全套教學課件
- DL∕T 904-2015 火力發電廠技術經濟指標計算方法
- DL∕T 552-2015 火力發電廠空冷凝汽器傳熱元件性能試驗規程
- 數字化設計與制造課程教學大綱
- php校友管理系統論文
- TD/T 1040-2013 土地整治項目制圖規范(正式版)
- 2023北京朝陽區高二下學期期末英語試題及答案
評論
0/150
提交評論