黑龍江省北安市第一中學2024年高三4月一模數學試題_第1頁
黑龍江省北安市第一中學2024年高三4月一模數學試題_第2頁
黑龍江省北安市第一中學2024年高三4月一模數學試題_第3頁
黑龍江省北安市第一中學2024年高三4月一模數學試題_第4頁
黑龍江省北安市第一中學2024年高三4月一模數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

黑龍江省北安市第一中學2023年高三4月一模數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交2.已知等比數列的各項均為正數,設其前n項和,若(),則()A.30 B. C. D.623.已知函數,若曲線上始終存在兩點,,使得,且的中點在軸上,則正實數的取值范圍為()A. B. C. D.4.已知x,y滿足不等式,且目標函數z=9x+6y最大值的變化范圍[20,22],則t的取值范圍()A.[2,4] B.[4,6] C.[5,8] D.[6,7]5.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加6.若復數滿足,則()A. B. C.2 D.7.已知函數的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-38.我國古代數學著作《九章算術》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數是()(結果采取“只入不舍”的原則取整數,相關數據:,)A. B. C. D.9.已知,為兩條不同直線,,,為三個不同平面,下列命題:①若,,則;②若,,則;③若,,則;④若,,則.其中正確命題序號為()A.②③ B.②③④ C.①④ D.①②③10.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術數之源,其中河圖的排列結構是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數,黑點為陰數,若從陰數和陽數中各取一數,則其差的絕對值為5的概率為A. B. C. D.11.已知函數是上的偶函數,且當時,函數是單調遞減函數,則,,的大小關系是()A. B.C. D.12.設函數在定義城內可導,的圖象如圖所示,則導函數的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.14.已知在△ABC中,(2sin32°,2cos32°),(cos77°,﹣cos13°),則?_____,△ABC的面積為_____.15.已知i為虛數單位,復數,則=_______.16.數列滿足,則,_____.若存在n∈N*使得成立,則實數λ的最小值為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數的取值范圍.18.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)求曲線上的點到直線距離的最小值和最大值.19.(12分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數)與圓的位置關系.20.(12分)已知在平面直角坐標系中,曲線的參數方程為(為參數.).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,曲線與直線其中的一個交點為,且點極徑.極角(1)求曲線的極坐標方程與點的極坐標;(2)已知直線的直角坐標方程為,直線與曲線相交于點(異于原點),求的面積.21.(12分)某職稱晉級評定機構對參加某次專業技術考試的100人的成績進行了統計,繪制了頻率分布直方圖(如圖所示),規定80分及以上者晉級成功,否則晉級失敗.晉級成功晉級失敗合計男16女50合計(1)求圖中的值;(2)根據已知條件完成下面列聯表,并判斷能否有的把握認為“晉級成功”與性別有關?(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數為,求的分布列與數學期望.(參考公式:,其中)0.400.250.150.100.050.0250.7801.3232.0722.7063.8415.02422.(10分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.2.B【解析】

根據,分別令,結合等比數列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數列前n項和公式進行求解即可.【詳解】設等比數列的公比為,由題意可知中:.由,分別令,可得、,由等比數列的通項公式可得:,因此.故選:B【點睛】本題考查了等比數列的通項公式和前n項和公式的應用,考查了數學運算能力.3.D【解析】

根據中點在軸上,設出兩點的坐標,,().對分成三類,利用則,列方程,化簡后求得,利用導數求得的值域,由此求得的取值范圍.【詳解】根據條件可知,兩點的橫坐標互為相反數,不妨設,,(),若,則,由,所以,即,方程無解;若,顯然不滿足;若,則,由,即,即,因為,所以函數在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數在上的值域為,故.故選D.【點睛】本小題主要考查平面平面向量數量積為零的坐標表示,考查化歸與轉化的數學思想方法,考查利用導數研究函數的最小值,考查分析與運算能力,屬于較難的題目.4.B【解析】

作出可行域,對t進行分類討論分析目標函數的最大值,即可求解.【詳解】畫出不等式組所表示的可行域如圖△AOB當t≤2時,可行域即為如圖中的△OAM,此時目標函數z=9x+6y在A(2,0)取得最大值Z=18不符合題意t>2時可知目標函數Z=9x+6y在的交點()處取得最大值,此時Z=t+16由題意可得,20≤t+16≤22解可得4≤t≤6故選:B.【點睛】此題考查線性規劃,根據可行域結合目標函數的最大值的取值范圍求參數的取值范圍,涉及分類討論思想,關鍵在于熟練掌握截距型目標函數的最大值最優解的處理辦法.5.C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.6.D【解析】

把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復數代數形式的乘除運算,考查復數模的求法.7.B【解析】

根據求出再根據也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導數的幾何意義,意在考查學生對這些知識的理解掌握水平.8.C【解析】

由題意可利用等比數列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.9.C【解析】

根據直線與平面,平面與平面的位置關系進行判斷即可.【詳解】根據面面平行的性質以及判定定理可得,若,,則,故①正確;若,,平面可能相交,故②錯誤;若,,則可能平行,故③錯誤;由線面垂直的性質可得,④正確;故選:C【點睛】本題主要考查了判斷直線與平面,平面與平面的位置關系,屬于中檔題.10.A【解析】

陽數:,陰數:,然后分析陰數和陽數差的絕對值為5的情況數,最后計算相應概率.【詳解】因為陽數:,陰數:,所以從陰數和陽數中各取一數差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.11.D【解析】

利用對數函數的單調性可得,再根據的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數是單調遞減函數,所以.因為為偶函數,故,所以.故選:D.【點睛】本題考查抽象函數的奇偶性、單調性以及對數函數的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數來傳遞不等關系,本題屬于中檔題.12.D【解析】

根據的圖象可得的單調性,從而得到在相應范圍上的符號和極值點,據此可判斷的圖象.【詳解】由的圖象可知,在上為增函數,且在上存在正數,使得在上為增函數,在為減函數,故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數圖象的識別,此類問題應根據原函數的單調性來考慮導函數的符號與零點情況,本題屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】

①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.14.【解析】

①根據向量數量積的坐標表示結合兩角差的正弦公式的逆用即可得解;②結合①求出,根據面積公式即可得解.【詳解】①2(sin32°?cos77°﹣cos32°?sin77°),②,,∴,∴.故答案為:.【點睛】此題考查平面向量與三角函數解三角形綜合應用,涉及平面向量數量積的坐標表示,三角恒等變換,根據三角形面積公式求解三角形面積,綜合性強.15.【解析】

先把復數進行化簡,然后利用求模公式可得結果.【詳解】.故答案為:.【點睛】本題主要考查復數模的求解,利用復數的運算把復數化為的形式是求解的關鍵,側重考查數學運算的核心素養.16.【解析】

利用“退一作差法”求得數列的通項公式,將不等式分離常數,利用商比較法求得的最小值,由此求得的取值范圍,進而求得的最小值.【詳解】當時兩式相減得所以當時,滿足上式綜上所述存在使得成立的充要條件為存在使得,設,所以,即,所以單調遞增,的最小項,即有的最小值為.故答案為:(1).(2).【點睛】本小題主要考查根據遞推關系式求數列的通項公式,考查數列單調性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)對函數求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數,對函數求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(),當時,,在時為增函數,所以,舍;當時,開口向上,對稱軸為,,所以在時為增函數,所以,舍;當時,二次函數開口向下,且,所以在時有一個零點,在時,在時,①當即時,在小于零,所以在時為減函數,所以,符合題意;②當即時,在大于零,所以在時為增函數,所以,舍.綜上所述:實數的取值范圍為【點睛】本題考查函數的導數,利用導數求函數的單調區間及函數的最小值,屬于中檔題.處理函數單調性問題時,注意利用導函數的正負,特別是已知單調性問題,轉化為函數導數恒不小于零,或恒小于零,再分離參數求解,求函數最值時分析好單調性再求極值,從而求出函數最值.18.(1)(2)最大值;最小值.【解析】

(1)結合極坐標和直角坐標的互化公式可得;(2)利用參數方程,求解點到直線的距離公式,結合三角函數知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標和直角坐標的轉化及最值問題,橢圓上的點到直線的距離的最值求解優先考慮參數方法,側重考查數學運算的核心素養.19.直線與圓C相切.【解析】

首先把直線和圓轉換為直角坐標方程,進一步利用點到直線的距離的應用求出直線和圓的位置關系.【詳解】直線為參數),轉換為直角坐標方程為.圓轉換為直角坐標方程為,轉換為標準形式為,所以圓心到直線,的距離.直線與圓C相切.【點睛】本題考查的知識要點:參數方程極坐標方程和直角坐標方程之間的轉換,直線與圓的位置關系式的應用,點到直線的距離公式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.20.(1)極坐標方程為,點的極坐標為(2)【解析】

(1)利用極坐標方程、普通方程、參數方程間的互化公式即可;(2)只需算出A、B兩點的極坐標,利用計算即可.【詳解】(1)曲線C:(為參數,),將代入,解得,即曲線的極坐標方程為,點的極坐標為.(2)由(1),得點的極坐標為,由直線過原點且傾斜角為,知點的極坐標為,.【點睛】本題考查極坐標方程、普通方程、參數方程間的互化以及利用極徑求三角形面積,考查學生的運算能力,是一道基礎題.21.(1);(2)列聯表見解析,有超過的把握認為“晉級成功”與性別有關;(3)分布列見解析,=3【解析】

(1)由頻率和為1,列出方程求的值;(2)由頻率分布直方圖求出晉級成功的頻率,計

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論